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Abstract: 

     This paper is an introductory tutorial for Logic paradigm (LP) 

in C++. No prior experience is required with languages that 

natively support LP. It also demonstrates how LP blends with 

the other paradigms supported by C++ and also the STL. The 

ability to choose an appropriate paradigm or an appropriate mix 

of paradigms for solving a given problem is essential and at the 

heart of multi-paradigm programming. We begin with a brief 

introduction to the logic paradigm, followed by a discussion of 

logic style programming in C++ and finally conclude with 

examples. The primitives used here for logic programming are 

provided by Castor, an open source C++ library available from 

www.mpprogramming.com. No language extensions to C++ are 

required to compile the code provided here. 

1 The Logic paradigm 
Logic programming is a Turing-complete programming 

paradigm. The model of computation used in logic is strikingly 

different from that of the more mainstream imperative and 

functional paradigms. Pure logic programs are entirely 

declarative in nature. When programming in languages based on 

the imperative paradigm (like C, C++, Java etc.), programmers 

actively instruct the computer how to solve a specific problem 

and the computer itself has no knowledge about the problem. 

Thus, algorithms play a central role. In logic programming 

languages such as Prolog or Gödel, however, it is exactly the 

opposite. In LP, the programmer provides problem-specific 

information to the computer instead of providing the steps 

required to solve a specific problem. The computer applies a 

general-purpose problem-solving algorithm to the domain-

specific information to produce the desired results. The 

programmer is not involved with specifying the exact steps (i.e., 

the algorithm) used in solving the problem. 

 

Information provided to the computer in logic programs can be 

classified into facts and rules. This knowledge base of facts and 

rules describes the problem domain. Specific problems that we 

wish to solve in this domain are posed as questions or queries. 

The computer examines the query in the context of the rules and 

facts and determines the solution. For example, if the game of 

Chess (or some other board game) represents our problem 

domain, the facts may consist of such things as: 

- The different kinds of pieces (e.g., white pawns, black 

pawns, white king, etc.) 

- The number of pieces of each kind (e.g., 8 black pawns, 1 

white king, etc.) 

- A description of the number of squares and their layout on 

the board (e.g., 8x8 board, 32 white squares, 32 black 

squares, etc.) 

And the rules may consist of: 

- The rule governing the movement of each kind of piece on 

the board (e.g., bishop moves diagonally) 

- The rule to determine if a piece is under attack 

- The rule to determine when a game is over and the result of 

the game. 

 

Typical questions that arise in Chess (and many other board 

games): 

- Given a specific layout of pieces on the board, what are 

all the possible moves for a given piece? 

- Given a specific board layout, which pieces can be moved 

next? 

- Which pieces are under attack in a given board layout? 

 

Each question above represents a different but concrete 

problem that belongs to the problem domain of Chess. 

Shifting focus from describing how to solve a particular type 

of problem to describing the general rules of the broader 

problem  domain allows us to seek answers to a wider variety 

of problems within the domain. In the remainder of this 

section we will further illustrate facts, rules and queries using 

a simple example concerning family relationships. The 

primary focus here is to get a feel for the basic mechanics of 

LP.  

1.1. Facts 
Facts are essentially the simplest form of true statements 

pertaining to a problem domain. They may also be referred to 

as data. Let us consider a four -person family (Son: Sam, 

Daughter: Denise, Father: Frank, Mother: Mary, Grandparent: 

Gary. Here is one way of describing the facts pertaining to this 

family more accurately: 

 

   Children facts: 

1. Sam is a child of Mary 

2. Denise is a child of Mary 

3. Sam is a child of Frank 

4. Denise is a child of Frank 

5. Frank is a child of Gary 

 

   Gender facts 

6. Frank is male 

7. Sam is male 

8. Mary is female 

9. Denise is female 

10. Gary is male  

 

The above facts can be used to answer simple questions such 

as “Is Sam male?”. This is a basic true/false question and can 

be answered by inspecting the gender facts. Since we have an 

exact match with fact 7, the answer to the question is “yes” or 

“true”.  However, a similar question “Is Frank female?” yields 

“false” or “no”. This is because we do not have any gender 

fact stating Frank‟s gender to be female. Thus, whenever 

matching evidence is found, the answer is true; and false 

otherwise. 

 

A slightly different type of question is “What is the gender of 

Sam?”. This is not a true/false question but it still can be 

answered by looking up the gender fact 7. Another question 

could be “Who is the child of Frank?” Again this is not a 

true/false question, however, it is a little more interesting as 

there is not one but two answers to it, Sam and Denise. This 
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tells us that we cannot simply stop examining the facts as soon 

as the first match is found; we need to continue the search till all 

relevant facts are exhausted. When there are multiple answers to 

a question, the person asking the question may be interested in 

one, some or all the answers. 

 

A question that cannot be answered based solely on the above 

facts is “Is Mary a parent of Sam?” This is because we have not 

yet declared what it means to be a parent. There are no direct 

facts stating any parent-of relationships. To solve this we can 

add one fact of the nature “X is parent of Y” for each fact of the 

nature “Y is child of X” above. This approach is cumbersome 

and error-prone especially when the database of facts is large. A 

better approach is to use rules to infer these new facts. 

1.2. Rules 
Rules are statements used to infer new facts (or data) from an 

existing body of facts. Here are some simple rules pertaining to 

the family relationships: 

 

Parent rule: X is parent of Y if 

 Y is child of X. 

 

Father rule: X is father of Y if 

 Gender of X is male   and    Y is child of X 

  

Mother rule: X is mother of Y if 

 Gender of X is female   and   X is parent of Y 

 

Here X and Y are essentially parameters and not constants like 

“Sam” and “Frank”. The parent rule provides the ability to 

answer questions like “Is Mary a parent of Sam?” or “Who is a 

parent of Sam?”.  Note that the parent and father rules above are 

specified only in terms of facts. The mother rule on the other 

hand is specified using a combination of facts (gender) and rules 

(parent) although it could be specified in same manner as the 

father rule. 

1.2.1. Recursive rules 
Rules can also be specified in terms of themselves. Consider 

describing the ancestor relationship as a rule.  

Ancestor rule: X is ancestor of Y if 

 X is parent of Y   or 

 Z is parent of Y    and   X is ancestor of Z 

 

Now we are in a position to ask “Is Gary an ancestor of Sam?” 

which should yield true. Similarly if we ask “Who is an ancestor 

of Sam?”, it should yield Frank, Mary and Gary. 

1.3. Queries and Assertions 
Once we have built the knowledge-base consisting of facts and 

rules we are ready to ask questions. Specific problems that need 

to be solved are posed as queries. We have seen examples of 

queries above for the family relationships. Other examples of 

queries, for instance, when dealing with graphs is to ask “What 

is the shortest path between nodes A and B?” or “Is graph G a 

connected graph?”  

 

Queries can be classified into two categories. The first kind 

simply tests if a certain statement is true: “Is Sam child of 

Gary?” These are also traditionally referred to as assertions, 

since the purpose is to essentially check or assert whether a 

fact is true. The second type of query is one that seeks for one 

or more solutions. For example, if we ask “Who is the child of 

Frank?”, we are not asserting if a fact is true, but instead 

asking the system to determine Frank‟s child. We will 

henceforth refer to these as generative queries as it requires 

the generation of solutions. 

1.4. Computation by inferencing  
We have not been very specific, so far, about how answers are 

actually computed (or inferred). Given the facts and rules 

described above it is fairly intuitive for any individual to 

mentally infer answers to all the questions we have asked. The 

fundamental principle behind such inferencing of new facts 

from existing rules and facts is referred to in formal Logic as 

modus ponens: 

 

     If A is true and  

     A implies B, 

     then B is true. 

 

A and B, above, refer to arbitrary statements. This principle is 

at the heart of the computational model used in logic 

programming. An intuitive but rather rough approximation of 

the algorithm used to solve queries in logic programming 

systems such as Prolog is as follows: 

 

1. Build a list of relevant facts and rules 

2. Pick a relevant fact and see if it answers the question. 

Repeat this until all relevant facts are exhausted. 

3. Pick a relevant rule that can be applied to derive new 

facts (using modus ponens). Repeat this until all 

relevant rules and facts are exhausted.  

 

At any step of the inferencing algorithm, there may be more 

than one rule and/or fact that can be selected in order to 

continue execution. Each choice leads to a different inference 

path and not all paths necessarily lead to solutions. Paths that 

do not lead to solutions are abandoned and inferencing 

resumes from the most recent point where other facts and/or 

rules were available for inferencing. Abandoning the current 

path and resuming execution from an earlier point in order to 

make a different choice is known as backtracking. 

Backtracking continues till all paths of inference have been 

traversed. Thus, computation is reduced to traversing different 

paths of inference determined from the facts and rules 

available. This is similar to performing depth first search in a 

binary tree where leaf nodes represent candidate results and 

the inner nodes represent intermediate results. 
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In pure formal logic, the exact order in which facts and rules are 

selected for application is non-deterministic. This also implies 

that the order in which answers are obtained is not deterministic. 

Since some paths may lead to solutions quicker than others, in 

practice the order of execution is fixed (same as declaration 

order) to allow control over efficiency. Fixing the order of 

application of rules also simplifies reasoning about the execution 

of logic programs, which is important for debugging. 

1.5. Summary 
In this section we described facts, rules, queries, assertions and 

inferencing. Facts are simply true statements. Rules can be used 

to derive new facts. Rules can be specified in terms of facts, 

other rules or even themselves (i.e. recursive rules). A collection 

of rules and facts can be used to answer relevant questions. 

Questions can be broadly classified into those that simply 

require a true/false answer or those for which solutions need to 

be generated. The former types of questions are referred to as 

assertions and the latter referred to as generative queries. 

Assertions have only one answer (i.e. true/false). Generative 

queries may have zero or more solutions. “Is Sam male?” is an 

example of an assertion. “Who is the child of Mary?” is an 

example of a generative query. Logical inferencing is used to 

answer questions. It involves examining the facts and application 

of rules. New facts emerge from application of rules which 

become candidates for future consideration during inferencing.  

2 Logic Programming in C++ 
Now let us translate the above facts and rules into C++ so that 

they can be executed. The examples here make use of Castor, an 

open source library that enables logic programming in C++. 

Castor enables embedding of logic style code naturally into C++ 

by allowing rules and facts to be declared as classes, functions or 

even just expressions. This low level of integration is very useful 

and allows for a programming platform where the paradigm-

boundaries are seamless.  

 

The following C++ functions represent the child and gender 

facts and the father rule (described previously) using Castor: 

 
// c is child of p 

relation child(lref<string> c, lref <string> p) 

{ 

  return eq(c,”Sam”)  && eq(p,”Mary”) //fact 1 

    || eq(c,”Denise”) && eq(p,”Mary”) //fact 2 

    || eq(c,”Sam”)    && eq(p,”Frank”)//fact 3 

    || eq(c,”Denise”) && eq(p,”Frank”)//fact 4 

    || eq(c,”Frank”)  && eq(p,”Gary”) //fact 5 

  ; 

} 

 
// p’s gender is g 

relation gender(lref<string> p, lref<string> g) 

{ 

  return eq(p,”Frank”)&& eq(g,”male”)  //fact 6 

     || eq(p,”Sam”)   && eq(g,”male”)  //fact 7 

     || eq(p,”Mary”)  && eq(g,”female”)//fact 8 

     || eq(p,”Denise”)&& eq(g,”female”)//fact 9 

  ; 

} 

 

// f is the father of c  

relation father(lref<string> f,lref<string> c) 

{ 

  //... if f is male and c is child of f 

  return gender(f,”male”)&& child(c,f);//rule2 

} 

 

Facts and rules are both declared as functions with the return 

type relation. The parameter types are specified in terms of 

template lref which stands for logic reference. Here it 

provides a facility similar to the pass by reference mechanism 

in C++. However, unlike references in C++, logic references 

can be left uninitialized. The value underlying a logic 

reference can be obtained by dereferencing it with operator *.  

 

Function eq is called the unification relation. Its job is to 

attempt to make its two arguments equal. If any one of its 

arguments is an uninitialized logic reference, it will assign the 

other argument to it. If both arguments have well defined 

values then it simply compares the two arguments. This task is 

referred to as unification. Consider the call eq(c,"Sam") in 

relation child. If c has been previously initialized with a 

value, eq will compare the contents of c with "Sam". 

However if c has not been initialized, "Sam" will be assigned 

to c.  The type relation, logic references and relation eq 

will be discussed further in sections 2.1, 2.2 and 2.3 

respectively. 

 

 Neither eq nor any of the user-defined relations like child or 

gender return the results of their intended computation 

immediately when invoked. Instead they return function 

objects that encapsulate the intended computation. The 

function objects can be stored in an object of type relation. 

Their evaluation can be triggered by application of the 

function call operator on relations. Given the above C++ 

definitions for the relations, we are in a position to make some 

queries and assertions. The following is a simple assertion to 

check if Sam is male: 

 
relation samIsMale = gender("Sam", "male"); 
if( samIsMale() )    

  cout << "Sam is male"; 

else  

  cout << "Sam is not male"; 

 

Similarly we can check if Frank is Sam‟s father: 

 
relation samsDadFrank = father("Frank","Sam"); 

if(samsDadFrank()) 

    cout << "Frank is Sam's father"; 

else 

    cout << "Frank is not Sam's father"; 

 

We can also issue generative queries such as “What is Sam‟s 

gender?”:  
 

lref<string> g; // g not initialized 
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relation samsGender = gender(“Sam”, g); 

if( samsGender() ) 

   cout << "Sam’s gender is " << *g; 

else 

    cout << "Sam’s gender is not known"; 

 

  

Here we pass “Sam” as the first argument and simply leave the 

second argument undefined (i.e., not initialized to any value). 

Note how the same function gender is used to assert if Sam is 

male and also find out Sam‟s gender. When all the arguments 

have been defined (i.e., initialized to some value) it performs a 

check to see if they satisfy the gender relation. Arguments that 

have been left undefined will act as output parameters and will 

be initialized with a value that satisfies the gender relation. This 

bidirectional nature of the lref parameters behaving as input or 

output is central to the logic programming model. It is important 

to note, however, that lref parameters on relations typically do 

not act as both input and output simultaneously as is often the 

case when using the pass-by-reference scheme in functions like 

swap. 

 

What happens if both arguments to gender relation are 

undefined?  

 
lref<string> p, g; // p and g not initialized 

relation anyPersonsGender = gender(p, g); 

if( anyPersonsGender() ) 

   cout << *p << "’s gender is " << *g;  

 

In this case both p and g will be assigned values by gender. 

Since the person-gender pair (“Frank”, “male”) is declared first 

in the gender relation, p will be assigned “Frank” and g will 

be assigned “male”.  

 

Generative queries, such as samsGender and 

anyPersonsGender above, may have zero, one or many 

solutions. So far we have only generated the one solution from 

them. Iterating over all solutions, quite naturally, involves the 

use of a while loop instead of the if statement we have used so 

far. The previous example can be rewritten to print all persons 

and their genders as follows:  

 
while( anyPersonsGender() ) 

   cout << *p << "’s gender is " << *g << "\n"; 

 

Similarly for listing of all Frank‟s children: 

 
lref<string> c; 

int count=0; 

relation franksChildren = father("Frank", c); 

while( franksChildren() ) { 

   ++count; 

   cout << *c << " is Frank's child\n"; 

} 

// c is now back to its uninitialized state 
cout << "Frank has " << count << " children"; 

 

Once all solutions have been exhausted, invoking 

franksChildren() returns false and causes the while loop 

to terminate. Also, when all solutions have been exhausted, 

logic reference c will be automatically reset to its original 

uninitialized state.  

 

Notice how the ability to use fundamental imperative 

constructs like the if statement and the while loop makes the 

transition between the logic programming model (in which 

results are generated) and the imperative model (in which the 

results are consumed) simple and seamless.  

 

Function eq, template type lref and type relation along 

with overloads for operators && and || provide the foundation 

for logic programming in Castor. They are described briefly in 

the following sections. For an in depth coverage of their 

design and implementation, refer to [CastorDesign]. 

2.1 Type relation 
In logic programming it is common to refer to facts and rules 

as predicates or relations. The term “relation” originates in 

set theory where it is used to imply an association between 

sets. So, gender is a binary relation between a set of 

individuals and the set of genders. Generally a strict 

distinction between rules and facts is not required when 

programming with Castor as they can be mixed freely within 

the same function/expression
1
. Keeping with logic 

programming lingo, we will henceforth refer to functions that 

represent facts or rules as relations. So, functions with return 

type relation are themselves referred to as relations.  

 

The type relation internally represents a function or 

function object with no arguments and return type bool. Thus 

child, gender and father return a function object that can 

be evaluated later in a lazy manner. 

2.2 lref: Logic reference 
Template type lref is an abbreviation for logic reference and 

provides a facility for passing values in/out of relations in the 

form of arguments, similar to references in C++. Unlike C++ 

references, a logic reference does not have to be initialized and 

provides the member function defined for checking if it has 

been initialized. The dereference operator * and the arrow 

operator -> can be applied to access the value referred to by a 

logic reference.  

 

Now let us understand the initialization semantics of lref. 

This is helpful reasoning about operational semantics of 

relational code. When an lref<T> is initialized (i.e., 

constructed) or assigned a value of type T (or a type 

                                                           
1
 This is different from the approach taken in classical logic 

programming systems like Prolog.  The general approach 

taken by Castor, of how to blend relations syntactically with 

the imperative languages, was pioneered by Timothy Budd in 

his multiparadigm language Leda. Although Castor 

shamelessly steals this idea from Leda, the underlying 

implementation techniques diverge significantly. 
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convertible to T), it internally stores a copy of the value. When 

initialized with another lref<T> (i.e., copy constructed), both 

logic references will be bound together. References that are 

bound together will refer to the same underlying value (if any). 

Thus any change to the underlying value of one logic reference 

is observed by all logic references that are bound together. A 

binding between logic references cannot be broken. That is, if 

logic references A and B are bound together and C and D are 

bound together, then C‟s binding with D cannot be broken in 

order to form a binding with A and B. C will continue to be a 

part of the binding for the duration of its lifetime. Logic 

references can only be bound by initialization (i.e., copy 

construction) and not by assignment. A binding can only be 

formed during construction of the logic reference and will be 

automatically broken when the logic reference is destroyed. 

When the last logic reference that is part of the binding is 

destroyed, it will deallocate the underlying value. 

 

Starting with Castor 1.1, pointers to objects can also be used to 

initialize an lref. When using pointers we must specify whether 

the lref should manage the lifetime of the object referenced by 

the pointer. For example: 

 
//lifetime of "Roshan" will be managed 

lref<string> s(new string("Roshan"), true); 

 

//lifetime of name will not be managed 

string name="Naik"; 

lref<string> s2(&name, false); 

 

Assignment with pointers is performed using method set_ptr: 
 

string str="Castor"; 

s.set_ptr(&str, false); // deallocates "Roshan". 

Will not manage lifetime of str 

 

Although using pointers to assign objects to lrefs is useful 

(especially when mixing paradigms) and efficient, it can also be 

dangerous if not used carefully.  Great care should be taken 

when specifying the lifetime management policy. For instance, if 

the pointer refers to an object on the stack, the lref should not be 

requested to manage its lifetime. Similarly, if two independent 

lrefs are made to refer to the same object using pointer 

assignment / initialization, both should not be requested to 

manage the lifetime of the object. Programmer must ensure that 

the objects being handed over to lrefs using pointers continue to 

exist as long as the lrefs can attempt to access them. Also, 

accidentally specifying lifetime management policy to false 

when true is intended will cause memory leaks. 

2.3 Relation eq: The unification 
function 

Function eq is the unification function and takes two arguments. 

The arguments may be logic references or regular values. eq 

returns an expression (i.e., function object) which when 

evaluated attempts to unify the two arguments. If unification 

succeeds it returns true; otherwise it return false. Unification 

performed by eq is defined as follows: 

- If both arguments are initialized, their values are 

compared for equality and the result of comparison is 

returned. 

- If only one argument is initialized, the uninitialized 

argument will be assigned the value of the initialized 

one in order to make them equal. 

- If both arguments are uninitialized, an exception is 

thrown. 

 

So unification will generate a value for the uninitialized 

argument to make both arguments equal, or it will compare its 

arguments if both are initialized. In short, unification is a 

“generate or compare” operation. It is possible to implement 

other variations to unification, but is generally not required.  

 

The expressions returned by the various calls to eq within, for 

instance, the gender relation are stitched together to form a 

bigger compound expression using || and && operators. It is 

important to note that the resulting compound expression is 

returned without being evaluated. These expressions are 

evaluated in a lazy manner. In other words, these expressions 

are stored in an object of type relation and will be subject 

to evaluation in the future when needed. The following section 

examines the evaluation of these expressions in detail. 

2.4 Evaluating Queries 
Given the above relations, we can formulate the query that 

tests for “Is Sam male?” and store it in a variable samIsMale as 

follows: 

 
relation samIsMale = gender("Sam", "male");   

 

The call gender(“Sam”,“male”)does not perform any real 

computation; it simply returns a function object that can be 

later executed to determine if Sam is male. Invocation of a 

relation does not execute/evaluate it. This splitting of 

invocation from execution is a case of lazy evaluation. In 

order to execute this expression we simply apply the function 

call operator on the variable that holds the expression:  

 
  if( samIsMale() )    

    cout << "Sam is male"; 

  else 

    cout << "Sam is not male"; 

 

The gender relation was defined previously as follows: 

 
// p’s gender is g 

relation gender(lref<string> p,lref<string> g)  

{ 

  return eq(p,"Frank")  && eq(g,"male") 

      || eq(p,"Sam")    && eq(g,"male") 

      || eq(p,"Mary")   && eq(g,"female") 

      || eq(p,"Denise") && eq(g,"female"); 

} 
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Since “Sam” and “male” were passed as arguments to gender, 

the expression returned by gender looks as follows with the 

arguments substituted: 

 
   eq("Sam", "Frank")  && eq("male", "male") 

|| eq("Sam", "Sam")    && eq("male", "male") 

|| eq("Sam", "Mary")   && eq("male", "female") 

|| eq("Sam", "Denise") && eq("male", "female") 

 

This expression contains four && expressions joined by three || 

operators. If any one of these && expressions returns true, the 

overall expression has been solved and evaluation halts in order 

to report success. Let us step through the execution that takes 

place when operator() is applied to samIsMale.  The first 

expression eq(“Sam”, “Frank”) &&  eq(“male”, “male”) 

is chosen for evaluation. An attempt to unify “Sam” with 

“Frank”, when evaluating eq(“Sam”, “Frank”), fails as 

“Sam” is not equal to “Frank”. Short-circuit evaluation principle 

tells us that the remainder of this && expression does not need to 

be evaluated. Thus, this path of execution is abandoned 

immediately and backtracking will resume execution from the 

next && expression eq(“Sam”, “Sam”) && eq(“male”, 

“male”). This time both halves of the && expression unify 

successfully as their arguments are equal. A solution to the 

expression has been found and true is returned to the caller 

which happens to be the if statement.  

 

If the function call operator is applied once again to samIsMale, 

execution resumes from the point at which it was previously 

halted. In this case the third && expression is chosen for 

evaluation, which fails due to failure in unification of “Sam” and 

“Mary”. This leads to evaluation of the fourth and final && 

expression which also fails for similar reasons and false is 

returned to the caller. All && expressions have now been 

evaluated and applying the function call operator to samIsMale 

henceforth will immediately return false. 

 

Now let us consider how to specify generative queries such as 

“What is Sam‟s gender?”. Such a query is constructed by calling 

gender with first argument initialized to “Sam” and leaving the 

second argument uninitialized: 

 
lref<string> g; // g not initialized 

relation samsGender = gender(“Sam”, g); 

if( samsGender() ) 

   cout << “Sams gender is ” << *g; 

 

Notice how it is possible to use the same gender relation to 

both assert if someone is male and to find the gender of a given 

individual. When a solution is found, g will be initialized to 

“male”. The expression returned by gender(“Sam”, g)now 

looks like this once we substitute the arguments: 

 
    eq("Sam","Frank")  &&  eq(g,"male") 

||  eq("Sam","Sam")    &&  eq(g,"male") 

||  eq("Sam","Mary")   &&  eq(g,"female") 

||  eq("Sam","Denise") &&  eq(g,"female") 

 

 

When operator() is applied to samsGender for the first 

time, the first && expression fails evaluation as “Sam” does 

not unify with “Frank”. Backtracking proceeds to try out the 

second expression eq(“Sam”, “Sam”) && eq(g, 

“male”). Unification of “Sam” with “Sam” succeeds and 

then eq(g, “male”) is evaluated. Since g is undefined, eq 

will assign “male” to g and thus unification succeeds. 

Evaluation of the entire expression halts and returns true to 

the calling if statement. If operator() is again applied to 

samsGender, execution will resume from the point it was 

previously halted. However, one very interesting thing 

happens before execution proceeds. It is critical that side 

effects occurring in the previous path of execution must be 

undone before attempting a different alternative. If side effects 

are not reverted before backtracking pursues another 

alternative, the side effects can affect the results of future 

evaluations and lead to incorrect results. Thus unification of g 

with “male” has to be reverted causing g to go back to its 

original uninitialized state. This undo feature is automatically 

provided by the unification function eq. 

 

The above query has only one solution, but as we observed 

previously, queries can have multiple solutions. For instance, 

we may want to find all males in the system. Once again we 

resort to the gender relation, but this time we leave the first 

argument uninitialized and initialize the second argument to 

“male”: 

 
  lref<string> person; 

  relation males = gender(person, "male"); 

  while( males() ) 

        cout << *person << " is male\n";    

 

This time around we repeatedly invoke males() till it 

returns false. Each invocation of males triggers the search 

for the next solution, i.e., a suitable value for the logic 

reference person. Each time around the loop, person is 

assigned a different value representing a solution. When all 

solutions have been discovered, males() returns false, the 

loop terminates and backtracking will restore person to its 

original uninitialized state. Since person does not refer to 

anything after the while loop has terminated, any attempts to 

access the underlying value using operator * or operator -> 

will throw an exception. 

2.5 Recursive Rules 
Recursion is often essential when declaring rules in the logic 

paradigm. For the family relationships example, let us 

consider defining a rule for the “ancestor” relationship. Note 

that there can be arbitrary levels of parent-child relationships 

between an ancestor and a descendant. We can recursively 

define the rule as:  

A is an ancestor of D if: 

 D is a child of A, OR 

 D is a child of some P AND A is an ancestor 

of P 
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This lends itself naturally into the following definition for the 

ancestor relation: 

 
// Flawed recursive definition 

relation ancestor(lref<string> A 

                  , lref<string> D) { 

  lref<string> P; 

  return child(D, A) 

     ||  child(D, P) && ancestor(A, P); 

} 

 

However, the above C++ definition contains infinite recursion. 

The return statement contains a recursive call to the ancestor. 

In order to break the recursion we need to postpone the recursive 

invocation so that it only takes place if truly needed. Castor 

provides helper relation recurse for defining recursive rules. 

recurse takes the relation that needs to be called recursively 

and the arguments that need to be used for the call. It returns a 

function object which when evaluated leads to the actual 

recursive call to ancestor. The problematic call 

ancestor(A,P) is simply rewritten as recurse(ancestor, 

A, P): 

 
relation ancestor(lref<string> A 

                  , lref<string> D) { 

  lref<string> P; 

  return child(D,A) 

     ||  child(D,P)  

              && recurse(ancestor, A, P); 

} 

 

In the above example, recursion is performed on relation 

ancestor that is defined as a global function. Usage of 

recurse is the same for static member relations too. For 

recursing on non-static member relations, the this pointer 

needs to be provided in addition to the method name and 

arguments as follows: 
 

recurse(this, &Type::method, ..args..) 

2.6 Dynamic Relations 
Definitions of all relations described so far have been fixed at 

compile time. Relation gender, for instance, provides a definite 

list of name-gender pairs that does not change at run time. But 

when this gender information is available only dynamically (say 

from a file or database), we need an alternative mechanism to 

build the set of clauses for the relation. Here we have relation 

gender, from section 1, which statically defines all the 

information. 

 
// statically defined relation 

relation gender(lref<string> p, lref<string> g) 

{ 

  return eq(p,"Frank")  && eq(g,"male") 

      || eq(p,"Sam")    && eq(g,"male") 

      || eq(p,"Mary")   && eq(g,"female") 

      || eq(p,"Denise") && eq(g,"female"); 

} 

 

Let us assume this information regarding each person‟s gender 

has been read from a file or database into a 

list<pair<string,string>> called genderList. Let the 

first item in the pair be a name and the second be his gender.  

We can now define relation gender_dyn, based on 

genderList as follows: 

 
list<pair<string,string> > genderList = ...; 

 

// dynamically building a relation 

Disjunctions gender_dyn(lref<string> p 

                       , lref<string> g)  

{ 

  Disjunctions result; 

  list<pair<string,string> >::iterator i; 

  for( i=genderList.begin(); 

                     i!=genderList.end(); ++i) 

    result.push_back(  

            eq(p,i->first) && eq(g,i->second) 

); 

  return result; 

} 

 

Here we use the type Disjunctions to dynamically build the 

set of OR clauses for the relation. Type Disjunctions is 

itself a relation that supports dynamic addition of clauses. 

Thus we can trigger evaluation on it using operator(). The 

return type of gender_dyn has also been changed from 

relation to Disjunctions. This is optional but useful, as it 

implicitly conveys the dynamic nature of gender_dyn to 

consumers. Conceptually Disjunctions is simply a 

collection of relations. When a Disjunctions instance is 

evaluated, the relations contained in it are treated as if there 

exists an operator || between each pair of adjacent 

relations. Relations can be added at the front or at the back of 

a Disjunctions relation using methods push_back and 

push_front. During evaluation, the contained relations are 

evaluated from front to back. Notice how an entire relational 

expression eq(p,i->first) && eq(g,i->second) is 

added to the Disjunctions. 

 

Relations Conjunctions and ExDisjunctions are also 

provided for building relations dynamically. They correspond 

to operators && and ^ respectively. The relation gender is 

redefined below using Conjunctions and Disjunctions. 

 
Disjunctions gender_dyn(lref<string> p 

                  , lref<string> g) { 

  Disjunctions result; 

  Conjunctions conj1 = eq(p,"Frank"); 

  conj1.push_back( eq(g,"male") ); 

 

  Conjunctions conj2 = eq(p,"Sam"); 

  conj2.push_back( eq(g,"male") ); 

 

  Conjunctions conj3 = eq(p,"Mary"); 

  conj3.push_back( eq(g,"female") ); 

 

  Conjunctions conj4 = eq(p,"Denise"); 
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  conj4.push_back( eq(g,"female") ); 

 

  result.push_back( conj1 ); 

  result.push_back( conj2 ); 

  result.push_back( conj3 ); 

  result.push_back( conj4 ); 

 

  return result; 

} 

 

In summary, Conjunctions, Disjunctions and 

ExDisjunctions together provide a facility for defining 

relations dynamically. This ability also naturally makes them a 

facility for runtime metaprogramming in the Logic paradigm. 

2.7 Inline Logic Reference 
Expressions (ILE) 

One may often encounter cases where the relations are simple 

operations to be performed on logic references using standard 

operators like +, -, etc. For instance, assuming the existence of a 

relation multiply for querying/asserting the product of two 

numbers, we can obtain the cube of a number as: 

 
lref<int> n=2, sq, cu; 

multiply(sq,n,n) && multiply(cu,sq,n)( ); 

cout << *cu ; 

 

Using multiply the square is generated and from the square 

we obtain the cube. How would the above code look for 

computing the expression n*5-n/2+5? It is evident that writing 

out simple arithmetic expressions involving more than a couple 

operators gets verbose and unreadable quickly. Castor allows 

inline specification of expressions composed from standard 

operators and at least one logic reference. The cube example can 

now be rewritten more concisely: 

 
lref<int> cu, n =2; 

eq_f(cu, n*n*n)(); 

cout << *cu; 

 

Relation eq_f unifies its first argument with the result of 

evaluating its second argument, which is a function object. It is 

important to note that the value of n*n*n is not computed when 

it is passed to eq_f. Since the expression is composed using an 

lref it is turned into a function object and then passed to eq_f. 

The function object undergoes evaluation when the evaluation of 

eq_f kicks in. At the time of evaluation, n must be initialized, as 

accessing the value of an uninitialized lref results in an 

exception. Arbitrary expressions, such as n*5-n/2+5, composed 

of lrefs and common overloadable operators, can be used to 

construct function objects easily: 

 
eq_f(cu, n*5-n/2+5)(); 

 

Such inline specification of expressions involving logic 

references is called ILE, short for “Inline Logic reference 

Expression”. ILEs come in handy in a variety of situations. 

Printing to console with relation write_f is another example 

where they can be used. The following example demonstrates 

the use of ILE for printing two strings separated by a comma: 
 

lref<string> ls=”Hello”; string s=”world”; 

write_f(ls + string(",") + s)(); 

 

Relation write_f takes a function or function object as 

argument and prints the result of the evaluation of its 

argument to stdout. We use an ILE in the above example to 

conveniently instantiate a function object and pass it to 

write_f. ILEs can be used as arguments to any relation 

provided by Castor suffixed with _f. 

 

If T is the result type of an ILE, then all overloadable 

operators defined over T other than comma, dereference 

operator *, &, and -> can be used on lref<T> to produce an 

ILE. Currently ILEs lack support for mixing in objects of an 

arbitrary type T2 even if relevant operators are defined over T 

and T2. Thus, 
 

write_f(ls + ",")(); //compiler error 

 

fails even though operator + is defined for arguments of type 

string and const char*.  

 

So far we have used ILEs to easily pass expressions to other 

relations. ILEs that produce a boolean value can be used to 

create simple relations inline. Consider the following relation 

that prints the result of the comparison of its arguments. 

 
relation greaterLessEq(lref<int> n 

                    , lref<int> cmpVal) { 

  return write(n) && write(" is ") && 

   (   predicate(n<cmpVal) && write("lesser")  

    || predicate(n>cmpVal) && write("greater") 

    || write("equal")  ); 

} 

 

Here, the ILE expressions predicate(n<cmpVal) and 

predicate(n>cmpVal) are used to conveniently define 

comparison relations directly inline instead of defining global 

less or greater relations to do the same job. Similarly, 

predicate(n%2==0) can be used to create an inline relation 

to test for even numbers, or one could conceive more complex 

expressions like predicate(n*2 >= cmpVal*n/2). It is 

important to note that relations defined using ILEs do not have 

the ability generate solutions. They will only assert if the said 

condition is true/false. Thus, predicate(n<cmpVal) will 

not generate values for n or cmpVal. All logic references 

involved in a relation are required to be initialized at the time 

when evaluation of the ILE occurs; otherwise an exception 

will be thrown. The exception will be thrown directly by any 

uninitialized logic reference when the ILE attempts to 

dereference it for evaluation. A more detailed discussion on 

ILEs is presented in section 4. 
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2.8 Sequences 
Castor provides facilities for working with standard C++ 

sequence containers and iterators in a relational fashion. Tasks 

associated with sequences can be broadly categorized into those 

producing sequences and those iterating over the elements in it 

(i.e., consuming). Often, in traditional logic programming (as in 

functional programming or C++ template metaprogramming), 

operations requiring modifications to a sequence are performed 

by creating a new sequence reflecting the necessary changes. 

Deletion of elements in a sequence is done by producing a new 

sequence without the unwanted elements. Thus deletion of 

elements is a combination of iteration over the original sequence 

and producing another sequence. Addition of new elements can 

also be performed in a similar fashion. Modifying values of 

elements can be considered an operation on the element and not 

on the sequence itself.  

 

Although it is possible to write relations where deletion or 

insertion of elements is reflected directly in the original 

sequence, we will restrict ourselves to traditional logic style 

techniques. The following sections describe some of the 

common tasks surrounding sequences. 

2.8.1 Generating Sequences 

Sequences are created using the sequence relation. The 

following defines a relational expression that creates a list of 

three even numbers. 

 
lref<list<int> > le; 

relation evens = sequence(le)(2)(4)(6); 

// see what it generates  

if(evens()) 

  copy(le->begin(), le->end() 

       , ostream_iterator<int>(cout, " ")); 

 

The uninitialized logic reference le is passed as the first 

argument to relation sequence. The elements used for 

constructing the sequence are then consecutively passed 

individually to whatever is returned by the preceding function 

call. Since le is not initialized, when the sequence relation is 

evaluated in the condition of the if statement, le will be 

initialized to a list<int> containing values 2, 4 and 6. Note 

that the sequence relation automatically figures out (from the 

type of its first argument) if you are interested in creating a 

list<int> or vector<string> or some other sequence 

type. This ability is useful when writing generic code.  

 

Abilities of the sequence relation go further. Sequences can 

be created not just out of simple values, but also from other 

sequences, logic references or an arbitrary mix of these. In the 

following code we create a list of strings using a mix: 

 
string s = "One"; 

lref<string> lrs = "Two"; 

 

vector<string> ls; 

ls.push_back("Three"); ls.push_back("Four"); 

 

vector<string> lsTemp;  

lsTemp.push_back("Five"); 

lsTemp.push_back("Six"); 

lref<vector<string> > lrls = lsTemp; 

 

// create the sequence into ln 

lref<vector<string> > ln; 

relation numbers =  

  sequence(ln)("Zero")(s)(lrs)(ls)(lrls); 

 

// see what it generates 

if(numbers()) 

  copy(ln->begin(), ln->end() 

   , ostream_iterator<string>(cout," ")); 

 

A current limitation when creating a sequence from other 

sequences is that, all sequences involved should be of the 

same kind. That is, lref<list<int> > cannot be created 

directly from a vector<int> or lref<vector<int> > 

and vice versa. However, this limitation is easily circumvented 

using sequence‟s support iterators as follows: 

 

vector<int> vi; 

vector<int>::iterator b1, e1; 

lref<list<int> > lrli1; 

// generate using iterators to vi 

relation r =  

  sequence(lrli1)(vi.begin(), vi.end()); 

 

 

lref<vector<int> > lrvi; 

lref<list<int> > lrli2; 

lref<vector<int>::iterator> b2, e2; 

// generate using lref<iterator> to lrvi 

relation r = begin(b2, lrvi) && end(e2, lrvi)  

              && sequence(lrli2)(b2,e2); 

 

The relations begin and end will produce logical references 

that point respectively to the beginning and one past end of the 

sequence referenced by lrvi.  The iterators are produced in a 

lazy fashion, i.e., only if and when they are actually evaluated 

in the future. The logic references produced by begin and 

end are subsequently provided to sequence for 

constructing lrli2. In general, care must be taken to avoid 

performing eager evaluations on logic references as they are 

typically initialized with appropriate values when 

backtracking and unification occurs. 

2.8.2 Iterating over sequences 

Relations head, tail, next and prev are provided for 

iterating through sequences. Relations head and tail 

provide relational style iteration that is also similar to how 

iteration is performed in functional languages. Relations next 

and prev provide support for iterating with iterators that is 

closer to iteration techniques in traditional C++. 
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2.8.2.1 Iterating with head and 

tail 
 In this technique to iterate over all elements in a sequence 

container (like a list or vector), we split it into its head (i.e., the 

first element) and tail (i.e., collection of remaining elements). 

Splitting the tail again into its head and tail produces the second 

element in the original container. In this fashion we can continue 

to split the tail recursively till the tail is empty. The following 

example demonstrates the use of relations head and tail for 

printing all values in a list of integers.  

 
relation printList(lref<list<int> > li) { 

  lref<int> h;  

  lref<list<int> > t; 

  return head(li, h) && write(h) && write(",") 

              && tail(li, t)  

              && recurse(printList,t); 

} 

list<int> li;  

// .. add numbers to list .. 

printList(li)();//print elements  

 

Relation head_tail is available for conveniently obtaining 

the head and tail directly in a single call. The return statement 

above can be rewritten using head_tail as follows: 

 

return head_tail(li,h,t)  

          && write(h) && write(",")  

          && recurse(printList,t); 

 

In cases where the tail is only used if a certain condition is true, 

then relations head and tail can be used more efficiently by 

computing the tail after evaluating the condition. Since 

computing a tail is an O(n) operation it makes sense to delay 

computing the tail after determining that it will be needed. A 

typical example of this is when searching for a vale in a list. 

Once the value of interest is found, the remainder of the list does 

not need to be processed. In cases like printList, where it is 

obvious that tail is always processed, head_tail may be 

preferred for sake of brevity.  

 

Similar to head and tail, there also exists head_n and 

tail_n when the first or last n elements in the sequence are of 

interest. The following example generates the first and last two 

items from a vector containing four items. 

 
int a[] = { 1,2,3,4 }; 

vector<int> v (a+0, a+4); 

 

lref<vector<int> > h; 

lref<vector<int> > t; 

 

head_n(v, 2, h)();  

// now h contains {1,2} 

tail_n(v, 2, t)();  

// now t contains {3,4} 

 

The extra argument is used to specify the number of head/tail 

items we are interested in. Exception will be thrown if the size 

of the sequence is less than the specified head/tail size. 

2.8.2.2 Iterating with next and 

prev 
Relation next represents a binary relation between a value 

and its successor. Since the successor of an iterator/pointer is 

another iterator/pointer that points to the next element in the 

sequence, we can use next to perform iteration. The 

following simple example prints the successor of 2: 

 
lref<int> s; 

next(2,s)(); 

cout << *n; 

 

next can also be used to generate a predecessor: 

 
lref<int> p; 

next(p,2)(); 

cout << *p; 

 

When both arguments are defined next will assert if the 

second argument is a successor of the first. An exception will 

be thrown if both arguments are undefined. Similar to next, 

relation prev is also available. The only difference between 

the two is that the order of arguments is reversed. next and 

prev can be used interchangeably depending on 

programmer‟s preference of which one is more readable in a 

given context. 

 

The following example demonstrates use of next to print all 

items bounded by a pair of iterators. 
 
relation printAll( lref<int*> beg_ 

                   , lref<int*> end_ ) { 

  lref<int> val; // for storing **beg_ 

  lref<int*> n; 

  return predicate(beg_==end_) 

        ^ ( dereference(beg_, val) 

           && write(val)   

            && next(beg_,n)  

            && recurse(&printAll,n,end_) ); 

} 

 

int ai[]={1, 2, 3}; 

printAll(ai+0, ai+3)(); 

 

Relation printAll traverses through the items by recursively 

producing the successor to iterator beg. In each recursive step 

a check is performed to ensure that sequence is not empty by 

comparing beg to end. If there are elements in the sequence, 

we dereference beg (in a relational manner using 

dereference) to produce the underlying value and print it 

using write. After printing the first item, we proceed to 

recursing on the remainder of the sequence by producing 

successor of beg in n. The above example can also be 

rewritten in terms of iterators from the standard library, such 
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as vector<int>::iterator, instead of simple pointer based 

iterators, by simply substituting occurrences of int* with 

vector<int>::iterator in the above example. 

2.8.2.3 Iterating with item 
Relations next and prev are useful in cases when explicit 

control over the iteration process is required. In cases when the 

intent is to simply produce all the values in a sequence one by 

one, relation item provides a simpler alternative. item takes 3 

arguments; the first two are a pair of iterators (or a pair logic 

references to iterators) representing the sequence and the third 

argument is logic reference. An element from the sequence is 

produced in the third argument for each evaluation of item. The 

first two arguments must be defined. 

 
int ai[]  = { 1, 2, 3, 4 }; 

vector<int> vi(ai+0, ai+4); 

lref<int> val; 

// 1 – iterating with regular iterators 

relation r = item(vi.begin(), vi.end(), val); 

while(r()) 

    cout << *val << ","; 

 

// 2 - iterating with logic references to  

//     iterators 

lref<vector<int>::iterator> lBeg = vi.begin() 

                          , lEnd = vi.end(); 

r = item(lBeg, lEnd, val); 

while(r()) 

    cout << *val << ","; 

 

In the above code, the third argument is left undefined in order 

to produce values from the sequence. item can also be used to 

assert if a particular value is present in the sequence simply by 

defining the third argument to the value of interest:  

 
if( item(vi.begin(),vi.end(),4)() ) 

    cout << "found!"; 

 

2.8.3 Unification of Collections 

Unification facilities provided by relation eq as discussed in 

section 2.3 above is not limited to scalar value types. Unification 

can be performed on collection types in a similar fashion. 

 
// produce a sequence 

int a[] = { 1,2,3,4 }; 

vector<int> v (a+0, a+4); 

lref<vector<int> > lrv; 

eq(lrv,v)(); 

assert(*lrv==v); 

 

// compare items 

lref<list<int> > lrl= list<int>(a+0,a+4); 

if(eq(lrl,v)()) 

  cout << "*lrl and v are equal” ; 

 

Relation eq provides the basic unification support for 

collections (i.e., sequences). In section 2.8.1 we discussed how 

sequence can be used to generate sequences. When the first 

argument is not initialized,  sequence generates a sequence 

filled with the elements specified in the remaining arguments. 

However, if the first argument is initilized, it will perform 

comparison of the elements in the first argument with the 

items from the remaining arguments. This makes sequence 

a powerful unification facility for sequences. We have already 

seen examples of producing sequences in 2.7.1. The following 

example demonstrates its use for comparison. 

 
int a[] = {1,2,3}; 

lref<list<int> > lrl= list<int>(a+0,a+3); 

lref<int> lri=1; 

vector<int> v; v.push_back(2); 

relation r =  

   sequence(lrl)(lri)(v.begin(), v.end()) 

            (3); 

assert(r()); // evaluation succeeds 

 

Unlike eq, sequence allows creation/comparison of 

sequences using any mix of other sequences, iterators, lrefs of 

other sequences etc.  

 

2.8.4 Summary 
There are conceivably many ways of working with 

collections/sequences and Castor only provides support for a 

few useful ones. We can deal with collections directly as a 

whole or via iterators. Relations item, next, prev and 

deref are lightweight facilites which deal with collections 

using iterators. Relations eq, sequence, head, tail, 

item allow working with whole collections directly. 

sequence is the most feature-rich and flexible, but is also  

heayweight compared to the alternatives. Other relations such 

as empty, size, insert, merge, eq_seq, etc., are also 

available for working with collections and iterators. Refer to 

the reference manual for a complete list. 

2.9 Cuts – Pruning alternatives 
It is sometimes useful to discard paths that will not produce 

solutions or will produce duplicate solutions when 

backtracking occurs. Such explicit pruning of paths is often 

done for efficiency reasons. There is no reason to waste time 

on pursuing alternative paths that are known to fail or not 

produce anything of interest (e.g., duplicates of previously 

found solutions). Consider the following relation that searches 

through a binary search tree for a given value: 

 
// Binary search tree 

struct BST { 

  BST* l;    // left subtree 

  BST* r;    // right subtree 

  int value; // current node 

   ... 

}; 

 

relation b_search(lref<int> val  

                  , const BST* tree) { 
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return 

    predicate(val==tree->value)  

 || predicate(val<tree->value)  

       && recurse(b_search, val, tree->l) 

 || predicate(val>tree->val)  

       && recurse(b_search, val, tree->r) 

    ; 

} 

 

Relation b_search consists of three clauses. The first clause 

simply checks if the value of the current node matches the 

argument. The remaining two clauses will search recursively on 

the left and right sub trees depending on how val compares 

with the current node. If the first equality comparison succeeds, 

it is evident that the remaining clauses can be discarded. Once 

any of the comparison operations succeed we would like the 

backtracking mechanism to stay committed to the current clause 

and ignore other alternatives. The facility for eliminating 

alternative paths is typically called a cut in logic programming. 

Class cut and relation cutexpr provide support for cuts in 

Castor. We can rewrite the above relation using cuts as follows: 

 
relation b_search(lref<int> val  

                  , const BST* tree) { 

return cutexpr( 

   predicate(val==tree->val) && cut() 

|| predicate(val<tree->val)  && cut()  

        && recurse(b_search, val, tree->l) 

|| predicate(val>tree->val)  

        && recurse(b_search, val, tree->r) 

  ); 

} 

 

Each occurrence of cut() marks the point at which we decide 

to commit to the current clause. The location of a cut() is 

called a cut point. A cutexpr only marks the boundaries 

within which pruning of alternatives takes place. In this case 

cutexpr(…) spans the all three clauses in the relation. Once 

the execution reaches one of the cut points, it will stay 

committed to the path beginning from the start of the cutexpr 

to the cut point. Thus all other alternatives available after 

“cutexpr(” begins will be discarded (or cut out) from 

consideration by the backtracking mechanism. Cuts do not affect 

the alternatives that existed prior to the cutexpr or the 

alternatives that exist after a cut point. The cutexpr itself 

merely provides the scope or the extent within which the cut 

operation takes place. 

 

A cut point without a surrounding cutexpr, or a cutexpr 

without any cut points are both meaningless. Such occurrences 

can sometimes occur accidentally when removing cuts from a 

relation that currently makes use of cuts. By design, such 

mismatched occurrences will produce compilation errors. 

Following usage of cuts wherein a cutexpr(…) appears in the 

caller and a cut() appears in the callee is also not allowed: 

 
// Error: cannot dynamically nest cuts 
relation outer(...) { 

   return cutexpr( inner(..) || ... ); 

} 

 

relation inner() { 

   return  ... && cut() ...   

} 

 

Excessive usage of cuts in logic programming is generally 

discouraged since they tend to make logic programs less 

readable. Also, when not used with care, they can incorrectly 

prune out valid paths. Their usage should be preferred 

primarily in situations where it leads to a reasonable gain in 

performance. It is desirable for a relation that uses cuts, to also 

produce the same results when the cuts are removed. Cuts that 

do not alter the results of a relation are referred to as green 

cuts. Cuts that are not green are called red cuts. Many usages 

of cuts can be rephrased more elegantly using the relational 

ex-or operator. 

2.10 Relational Ex-Or operator 
We have seen operators && and || used to define relations. 

Castor also provides support for defining ex-or semantics 

between clauses in a relation using the operator ^. It is useful 

in expressing the idea that the second clause should be 

attempted only if the first clause fails. Let us revisit the 

greaterLessEq example.  

 
relation greaterLessEq(lref<int> n 

                    , lref<int> cmpVal) { 

 return predicate(n<cmpVal) && 

write("n<cmpVal")  

     || predicate(n>cmpVal) && 

write("n>cmpVal") 

     || write("n==cmpVal"); 

} 

 

The following usage of greaterLessEq exposes a problem 

in the above implementation. 

 
relation r = greaterLessEq(2,3); 

while(r()); 

 

This produces the following output: 
   n<cmpVal 

   n==cmpVal 

 

This is because the while loop forces the backtracking to 

purse all remaining paths even after the first clauses matches. 

The second clause fails due to the (n<cmpVal) guard at its 

beginning and this leads to the evaluation of the third and final 

clause. Since the third clause does not have the guard 

(n==cmpVal), it succeeds and thus we observe the output 

“n==cmpVal”. An obvious solution is to put the guard in 

front of the third clause.  Another solution is to introduce cut 

points at the end of the first and second clauses. However a 

simpler and preferred solution is to rewrite it in terms of the ^ 

operator as follows: 

 
relation greaterLessEq(lref<int> n 

                    , lref<int> cmpVal) { 
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return ( predicate(n<cmpVal) 

                    && write("n<cmpVal") ) 

     ^ ( predicate(n>cmpVal) 

                    && write("n>cmpVal") ) 

     ^ ( write("n==cmpVal") ); 

} 

 

Here we are being explicit about the fact that three clauses are 

mutually exclusive candidates. Not only is this more explicit but 

also more readable and efficient. Once any one of the clauses 

succeeds greaterLessEq also succeeds. Backtracking will 

ignore any remaining unevaluated clauses. Thus all future 

attempts to seek more solutions from greaterLessEq will fail 

immediately. It is important to note the use of additional 

brackets around the clauses separated by ^. Since, unfortunately, 

the precedence of the ^ operator is higher than && and || 

operators, use of these brackets is necessary to preserve correct 

associativity. 

 

Most, but not all, common usages of cuts can be elegantly 

replaced with use of ^ operator. Support for operator ^ to define 

relations is a feature unique to Castor. 

2.11 Specifying Lref parameters 
types for relations 

There are basically three ways of specifying lref parameters for 

relations: 

- Basic: lref<T> 

- By reference: lref<T>& 

- By const reference: const lref<T>& 

 

Basic: If the parameter type is specified to be lref<T>, 

arguments of type T and lref<T> are both acceptable. This 

versatility makes this mechanism a common choice for 

specifying parameters on relations. When the caller passes an 

argument of type lref<T>, the callee receives it such that the 

new lref points to the same underlying object of type T. This is 

similar to passing pointers in C++. However, when the argument 

is an object t of type T, the callee receives a copy (on the heap) 

of t to which the callee‟s lref refers to.  

 

relation foo(lref<int> i) { 

    return True(); 

} 

 

lref<int> li=2; 

foo(1);  // OK! passes a copy of 1 

foo(li); // OK! 

 

This basic parameter specification style is used most commonly 

in Castor. 

 

By reference: For certain types where copy construction can be 

potentially very expensive such as std::vector, it is 

desirable to prevent implicit and (possibly) repeated copy 

construction. This can be done by disabling the ability to pass 

arguments of type T directly and requiring only arguments of 

type lref<T>. This can be done by specifying the parameter 

type as lref<T>&. 
 

relation foo(lref<vector<int> >& v) { 

    return ...; 

} 

 

vector<int> v= ...; 

lref<vector<int> > lv= ...; 

 

foo(v);  // Error! 

foo(lv); // OK! 

 

All relations in Castor that expect container types (such as 

empty and size) as arguments use this form of parameter 

specification.  

 

By const reference: This mode of parameter specification is 

similar to the basic style with one significant difference. A 

const lref<T>& parameter cannot be passed as argument 

to another relation that specifies its lref parameter by 

reference.  

E.g.: 

 
relation bar(lref<int>& j) { 

    return  ... 

} 

 

relation foo(const lref<int>& i) { 

    return bar(i); // Error! 

} 

 

Yet another, but minor, difference compared to the basic style 

is that the value of the lref cannot be modified directly inside 

the relations: 

 
relation foo(const lref<int>& i) { 

    i=2; // Error! 

    return bar(i);  

} 

 

This is rarely an issue since direct mixing of such imperative 

code inside a declaratively specified relation should be 

avoided in practice. The reason being, the imperative 

assignment of 2 to i here is performed when the relation is 

invoked as opposed to when the relation is evaluated. 

2.12 Debugging 
Unfortunately, in an imperative world, debugging relational 

code is not as straight forward as debugging imperative code. 

Debuggers for C++ are, for good reason, designed to debug 

imperative code conveniently. In principle, since we let the 

computer figure out how to solve the problem, we should be 

oblivious to how evaluation takes place. In practice, however, 

it is useful to be able to peek into the evaluation as it 

progresses. This is important for verifying correctness of user-

defined relations especially when the expected output does not 

match what is observed.   
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For debugging logic programs some creative thinking is 

typically required. Since relations return expressions that will be 

lazy evaluated, it is not very interesting to place a breakpoint 

directly inside the body of a relation‟s definition. In fact, some 

of the relation‟s lref arguments may not even be initialized 

with a value at the point where the relation is called, but are 

likely to be initialized by the time the relation undergoes 

evaluation. Also most of the actual execution occurs within the 

function objects returned by operators || and && and relation 

eq and debugging using breakpoints inside these library artifacts 

requires understanding of Castor‟s implementation details
2
. 

 

A simple and primitive technique is to insert print statements at 

relevant points to observe the progress. Castor provides a 

relation write for printing to stdout in relational manner. In 

the following example we add debug statements to the 

ancestor_dbg relation to observe the generation of values P 

in the second clause as an attempt to find a solution progresses.  

 
relation ancestor_dbg(lref<string> A  

                  , lref<string> D) { 

  lref<string> P; 

  return child(D,A)  

     ||  child(D,P) && write(P) && write(",")  

           && recurse(ancestor, A, P); 

} 

 

The following attempt to find all ancestors of Sam:   
lref<string> X; 

relation a = ancestor_dbg(X,"Sam"); 

while(a()) 

   cout << " :" << *X << " is Sam's ancestor\n"; 

 

produces the following output on screen: 
:Mary is Sam's ancestor 

:Frank is Sam's ancestor 

Mary,Frank, :Gary is Sam's ancestor 

Gary, 

 

It can be observed from this output that the ancestors Frank and 

Mary are discovered without resort to recursion since they are 

direct parents of Sam. Once both parents of Sam are found, the 

printed output reveals that backtracking proceeds to evaluate the 

recursive clause looking for Mary‟s ancestors. 

3 Implementing relations 
imperatively 

The ability to easily reach out from any paradigm to another, as 

and when required, is essential in multiparadigm programming. 

So far, we have seen examples of how relations can be built on 

top of other relations and also how relations can be consumed by 

imperative code. In this section we complete this cycle by 

understanding how relations can consume non-relational 

                                                           
2
 It may be interesting to note that the basic foundation to 

support logic programming is implemented in Castor in only 

about 400 lines of code. 

facilities. This involves using imperative techniques to 

implement the relation. 

 

Relations may be defined either declaratively or imperatively. 

The examples seen so far in this document are cases of 

defining them declaratively since the programmer is not 

involved in providing the operational semantics for the 

relation. That is, the author of the relation does not specify the 

algorithms and data structures used to perform computation.  

 

Producing imperative definitions for relations is generally 

more work compared to producing declarative definitions. 

Also declarative definitions are easier to read and get right. 

However, there can be situations that motivate a programmer 

to define relations imperatively. Typical reasons include: 

 Interaction with low level (e.g., I/O, memory, drivers, 

etc.) or other imperative facilities for which relational 

abstractions either do not exist or the ones available are 

inadequate. 

 Finer grain control over execution to improve 

performance when necessary. 

 Improving the ability to step through a relation‟s 

execution with a debugger. 

Below we cover three approaches to implementing relations 

imperatively. The choice of which approach can be taken 

depends upon the complexity of relation.  

With relation predicate 
A test-only relation is one that does not modify any of its 

arguments and consequently does not induce any side effects 

into the system that need to be reverted during backtracking. 

Such a relation is useful in testing if a given condition is true. 

Generally, due to their very nature, test-only relations succeed 

only once at most. Relation predicate is useful for 

defining such relations. The actual test condition can be 

packaged into a regular function that returns bool, and then 

invoked via relation predicate. Consider defining a 

relation that checks if a given file exists.  

 
bool fileExists_pred(string fileName) { 

    if(/* file found on disk */) 

        return true; 

    return false; 

} 

 
relation file_exists (lref<string> fileName_) 

{ 

  return predicate(fileExists_pred,fileName_); 

} 

 

This is essentially a two-step process. First, the predicate 

function fileExists_pred contains the imperative code 

to be used for the relation. Second, relation predicate is used to 

convert the predicate function into a relation inside the 

“wrapper” relation file_exists. Note that the relation 

takes an lref argument whereas the function takes a 

string argument. Although for both the parameter types can 

be lref<string>, it is natural for a relation‟s parameter 
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type to be an lref and that of an ordinary function to be a regular 

type. Relation predicate assumes that the target predicate 

function does not take an lref argument. Consequently, if 

filename_ is a logic reference, it automatically dereferences 

fileName_, when invoking the predicate function 

fileExists_pred. If filename_ is not a logic reference, 

it will be passed directly.  

 

Also note the customary use of „_‟ at end of the parameter‟s 

name „fileName_‟. This indicates that it is not a bi-directional 

argument. Thus its value should be defined by the time the 

evaluation of the relation takes place. If it is not defined at this 

time, an InvalidDeref exception is thrown when 

predicate attempts to dereference fileName_. 

With relation eval 
.. todo.. see reference manual. 

As coroutines 
Every relation is actually an instance of some function object 

type. So far we have defined relations as functions and 

expressions. Since this syntactic approach is a declarative way of 

specifying the operational details of the underlying function 

object, its type name and imperative definition are not visible to 

us. In this section we shall see how to implement these function 

objects directly. This has the advantage that it gives complete 

control over the computational steps involved and also the 

relation is easier to step through using a debugger. The 

downside, however, is that it requires more code to implement 

and also needs some extra care. 

 

We have seen that lazy evaluation is a key aspect of how 

relations operate. Each time a result is generated, its execution is 

suspended and control returns to the caller. On the next 

invocation, the relation resumes from its execution was 

suspended, produces the next value and once again suspends 

execution and returns control back to the caller. The caller can 

choose to invoke it again if more results are needed. Functions 

that support this suspend-and-resume behavior are called 

coroutines. This is unlike typical functions (i.e. subroutines) that 

always start execution from the beginning on every invocation 

and return control to the caller after generating all results. Since 

in case of coroutines, the caller and the callee both resume 

execution when control is transferred to them, coroutines can be 

considered to maintain a sibling relationship with their caller. 

Subroutines, on the other hand, can be considered to maintain a 

child relationship with their caller, as they undergo one full 

lifetime on each invocation by the caller. 

 

Since C++ does not natively support defining coroutines, Castor 

provides the class Coroutine and four macros (co_begin, 

co_end, co_yield, co_return) for this purpose. Although 

these are designed for implementing relations as classes, one 

may use them outside the context of logic programming. 

 

In Castor, a coroutine is implemented as a function object. To 

define this class, we derive it from Coroutine and implement 

the function call operator bool operator()(void) as 

follows: 
 

// relation to check or generate values in a 

specified inclusive range  
template<typename T> 

class Range_r : public Coroutine { 

    lref<T> val, min_, max_; 

public: 

    Range_r(lref<T> val, lref<T> min_, lref<T> 

max_)  

         : min_(min_), max_(max_), val(val) 

    { } 

 

    bool operator() () { 

      co_begin(); 

 ... 

      co_end(); 

    } 

}; 

 

Note the use of macro co_begin to start and macro 

co_end to end the body of operator(). No statement 

should precede or follow these two macros in the method 

body. These two macros merely set up a switch statement 

spanning the definition of operator(). The complete 

definition of operator() is as follows: 

 
bool operator() () { 

  co_begin(); 

  if(val.defined()) 

     co_return( (*min_<*val && *val<*max_)  

            || (*min_==*val) || (*max_==*val) 

); 

  for(val=min_; (*val<*max_)||(*val==*max_) 

              ; ++val.get()) 

    co_yield(true); 

  val.reset(); // Important for backtracking 

  co_end(); 

} 

 

Notice the absence of return statements. These have been 

replaced with co_return and co_yield. Both macros 

return the evaluated value of their argument back to the caller.  

 

Macro co_yield indicates a point where execution is 

temporarily suspended, and a true/false value produced 

by evaluation of its argument is returned back to the caller. 

Next invocation of operator() will resume execution 

inside the method starting directly at this yield point. Invoking 

this macro essentially causes the coroutine to remember the 

point where execution had reached in the previous invocation. 

On the other hand, invoking co_return indicates that no 

future resumption of execution is required from inside the 

method body, and the true/false value produced by 

evaluation of its argument is returned to the caller. All future 

invocations of operator() on this instance of the class will 

return false immediately.  
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Conceptually, co_yield indicates temporary suspension of 

execution and co_return indicates completion of execution. 

Since, in logic programming, returning false to the caller is an 

indication by a relation that its task is complete, 

co_yield(false) also indicates completion as it returns 

false. When co_yield‟s argument evaluates to false, all 

future invocations of operator() will return false 

immediately. This behavior is similar to co_return(false). 

 

The definition of operator() first checks to see if the val is 

currently initialized in order to determine whether the relation 

needs generate a value for val or simply check if val lies in 

the specified range. If val is initialized, then only the check 

needs to be performed; otherwise, values need to be generated 

for val. The body of the if statement compares val with min 

and max and returns the result back to the caller. Since in this 

test mode there is no more work to be performed, co_return 

is used to return the result of the comparison.  

 

In the case that val is not initialized, the for loop is executed. 

The loop header generates values for val starting from min up 

to max. On every iteration, the body of the loop yields true back 

to the caller indicating successful evaluation of the relation. 

Once the execution enters the loop, on every subsequent 

invocation of operator(), execution directly resumes at 

co_yield and thus performs one more iteration of the loop. 

Each time val is incremented and true is returned back to the 

caller. Once val exceeds max, the loop terminates and val is 

reset back to its original initialized state. Resetting val back to 

its original state once the relation‟s work is done is important 

since backtracking requires all relations to revert their own side 

effects prior to signaling completion. Delegating the task of 

reverting side effects to the individual relations that induce them 

allows the backtracking subsystem to simple and efficient. 

 

When the function object is a generic class that requires type 

parameters it is customary to provide a helper generic function 

to allow automatic template parameter deduction as follows:  

 
template<typename T> 

Range_r range(lref<T> val, lref<T> min_ 

                         , lref<T> max_) {  

    return Range_r<T>(val,min,max); 

} 

 

One important thing to keep in mind when implementing 

coroutines is to avoid defining variables inside operator(), 

since their state will not persist across invocations. Thus local 

variables required by the coroutine should be promoted to data 

members of the function object. 

 

4 Inline Logic Reference 
Expressions 

An ILE is an expression composed of at least one logic 

reference variable and most of the common overloadable 

operators. Unlike typical expressions in C++, ILEs do not 

undergo evaluation to produce a result immediately at the 

point of definition. Instead, they produce an expression tree 

that represents the semantics of the expression. This 

expression tree can be evaluated to produce a result, at a later 

point in time, by applying the function call operator. The 

following example demonstrates these basic semantics: 

 
int i=0;  // plain old variable 

i+1+1;    // simple expression: produces value 

2 

 

lref<int> li=2;  // logic reference 

(li+i)*2;        // ILE: produces an 

expression tree 

 

Following example uses an ILE where a function is required.  
 

template<typename Func>  

void printResult( Func f ) { 

   cout << f(); 

} 

 

printResult( li*li / 2 ); // pass ILE as 

argument 

 

In the above code, the ILE undergoes evaluation inside the 

printResult when f() is evaluated. We can also return 

functions from other functions: 

 
void runtests(); 

boost::function<int()> halfOf( lref<int> li ) 

{ 

   return li/2; // return an ILE 

} 

 

boost::function<int()> f = halfOf(4); 

cout << f(); // ILE is evaluated here 

 

ILEs provide a convenient way to create expressions that 

require delayed evaluation. The convenience comes from not 

having to package them explicitly inside a named function. 

Such expressions are also traditionally called lambda 

expressions. Every ILE contains a copy of all variables and 

values required to compute its expression. This set of variables 

and values is referred to as the ILE‟s closure. Since copying 

logic references is like copying pointers or references (i.e., the 

copy refers to the same underlying object), any changes to the 

object referred to by the original lref will be observable to 

the ILE. When multiple lrefs refer to the same object, the 

object will be kept alive until the reference count goes down to 

zero. This makes it safe to evaluate ILEs even after the 

termination of the scope in which the ILE was created. This 

safety is essential in getting the most out of the delayed 
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evaluation semantics provided by ILEs. The following examples 

illustrate the closure semantics. 

 
int x=2; 

lref<int> lx=3; 

boost::function<int()> ile = lx+x; 

cout << ile();  // prints 5 

x=1; // this will not observable to the ile as 

it contains a copy of x 

cout << ile();  // prints 5 

lx=4 ;    // updating the lref will be 

observable to the ile 

cout << ile();  // prints 8 

 

 

Since an ILE is an expression and not a function, it does not 

accept any arguments at the time of evaluation. It is a free  -

standing expression that can be evaluated at anytime and as 

many times as needed. As we saw above, each evaluation may 

potentially produce a different result. Changes in the result could 

occur due to external code altering the object referred to by one 

of the logic references, as in the code above. A change in the 

result could also be due to the ILE inducing side effects on its 

own closure as follows:  
 

lref<int> lx=3; 

boost::function<int()> ile = ++lx; 

cout << ile(); // prints 4 

cout << ile(); // prints 5 

cout << ile(); // prints 6 

ILEs such as ++lx which induce side effects are said to be 

impure. Those that don‟t, such as x+2, are pure. 
3
 

Creating relations from ILEs 
ILEs were originally devised as a quick and easy way to create 

anonymous relations directly inline from simple expressions 

instead of having to create named relations. ILEs that return 

bool values can be turned into relations with the help of 

relation predicate. Relation predicate is an adapter that 

allows functions or function objects (with up to six arguments) 

that return bool to be treated as relations. Relations created by 

passing an ILE to predicate are referred to as ILE-based 

relations.  

 

The following example demonstrates the use of ILE to generate 

even numbers. 

 
//Print all even numbers in the inclusive range 

1...20 

lref<int> x; 

relation evens = range<int>(x,1,20)  

                  && predicate(x%2==0); 

while(evens()) 

   cout << *x << " "; 

 

                                                           
3
 This is same as the classification of pure and impure functions 

in Computer science. 

Above, the ILE-based relation predicate(x%2==0) tests 

if x is even. We start out with x not being initialized. Relation 

range generates values for x, and since x is part of the ILE‟s 

closure, any changes to x will be visible to the ILE. This 

allows the ILE-based relation to test the values one by one as 

they are generated. This is an example of the classic generate-

and-test pattern commonly used in logic programming. In both 

the examples relation range is used to generate values for 

logic references and the ILE-based relations filter out values 

that fail the check. 
 

The following example demonstrates the use of ILE to 

generate Pythagoras triplets. 
 

// Print all Pythagoras triplets less 

than 30 

lref<int> x,y,z; int max=30; 

relation pythTriplets =  

      range<int>(x,1,max) 

   && range<int>(y,1,max)  

   && range<int>(z,1,max)  

   && (   predicate(x*x+y*y==z*z)  

       || predicate(z*z+y*y==x*x) ); 

 

while(pythTriplets()) 

    cout << *x << "," << *y 

         << ","<< *z << "\n"; 

 

Here the first three uses of range generate values for x, y 

and z in the range 1 through 30 and the two ILE based 

relations are used to check if x, y and z form a Pythagoras 

triplet. 

 

Another common usage of ILEs is with relation eq_f, which 

takes a function or function object as its second argument. It 

unifies the first argument with the value obtained by 

evaluating the second argument. Thus, if x and y are lrefs, 

then eq_f(x, y*3) unifies x with the value obtained by 

evaluating the ILE y*3. 

 

Impure ILEs should not be used when creating ILE-based 

relations. If such relations produce side effects, they will not 

be reverted during backtracking and will most likely lead to 

surprising results. Consider predicate(++x<5) which 

increments value of x each time it is evaluated. Here, ++x<5 

is an impure ILE as it modifies value of x. Backtracking relies 

on reversal of side effects. When such side effects are desired 

they should be packaged into a named relation that ensures 

reversal of the side effects. Relation predicate(++x<5) 

can be rewritten safely as  inc(x) && predicate(x<5) 

or next(x,y) && predicate(y<5). The former 

increments x, and the latter unifies y with the incremented 

value of x (without effecting value of x).  The latter style is 

generally preferred. 

 

The advantage of ILE-based relations is the brevity; the 

downside, however, is that they are not as full featured as 
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named relations. ILE-based relations can only perform tests on 

values produced by other relations; they are unable to generate 

solutions themselves. Thus all logic references involved in the 

ILE must be initialized at the time of evaluation. 

 

Limitations of ILEs 
There are a couple of limitations to ILEs that users should be 

aware of. The first one is due to language limitations, and the 

second one is by design. 

 

1) Inferred return type: A seemingly trivial question that one 

may ask is “What is the type of the result produced on 

evaluation of an ILE?” The answer of course is “It depends on 

the expression represented by the ILE”. A more precise answer 

should be “Same as if the expression were rewritten with logic 

references substituted with their effective types”. That is, the 

expression x*y should yield an object of the same type and 

value regardless of whether x and y are lrefs or plain old 

variables. Unfortunately, this is not always true as it is not 

possible to programmatically compute the return type of an 

arbitrary expression or function call in C++. Then how does one 

determine the return type of an ILE? It is inferred using the 

following intuitive rules: 

- All comparison operators (<, >=, ==, != , etc.) and 

operators &&, || and ! have return type bool. 

- Return type of prefix ++ and –– is T&, if T is the 

argument type. 

- All other unary and binary operators are assumed to 

have return type same as the type of their first 

argument. 

An easy way of determining the type is to simply observe 

whether or not the ILE as a whole represents a comparison 

operation. If the ILE finally yields the result of a comparison, 

then its return type is bool, otherwise the return type is 

determined by the first argument to operator that is evaluated 

last in the ILE. Here are some examples: 

 
    lref<int> x=3;  

    double y=1; 

    2.0 * x;    // double 

    x * 2.0;    // int 

    y*x;        // double 

    x*y;        // int 

    2*x + 3.1;  // int 

    3.1 + 2*x;  // double 

    5 < x;      // bool 

    x == x;     // bool 

    x < 3*x+5;  // bool 

    3*x+5 < x;  // bool 

    ++x;        // int& 

 

2) Supported operators: All overloadable operators with the 

exception of the following are supported for the creation of 

ILEs. 

- AddressOf operator & 

- Dereference operator * 

- Member access operator -> 

- Indexing operator [] 

- Comma operator , 

- All forms of assignment (=, +=, *= etc.) 

 

Since assignment is used to assign a new value to an lref 

immediately, it obviously cannot be used to produce ILEs. 

Similarly, dereference operator * and operator -> are used to 

access the underlying value and it rules them out from being 

used to compose ILEs. Address-of and comma operators take 

on default language -defined semantics when used on lrefs. 

Finally, as there is no reasonably intuitive way to know the 

result type of an index operator, it too remains unsupported. 

Summary 
The following is a gist of the major points covered in this 

section on ILEs: 

- ILEs are expressions that can be treated as function 

objects. 

- Every ILE carries its closure with it. Thus, it can be 

safely evaluated even after the termination of their 

lexical scope. 

- ILEs are either pure (i.e. free of side effects) or 

impure. 

- Only pure ILEs should be used to create ILE-based 

relations. 

- ILE-based relations cannot generate solutions; they 

can only perform testing of values generated by other 

relations. 

- Return types of ILEs are determined by applying the 

two rules noted above. 

- Most overloadable operators are supported on lrefs 

for creating ILEs. 

 

5 Limitations of Logic 
Paradigm 

Bi-directionality of lref arguments. 
Typically lref parameters for relations are bi-directional. A 

relation generates a value for an lref parameter if its value is 

left undefined by the consumer of the relation. However it is 

not always feasible or even sensible for a relation to generate 

values for some of its lref parameters. Values for these lrefs 

must be defined by the time the relation is evaluated. Such lref 

parameters are called input-only parameters.  

 

Consider implementing relation not_eq which succeeds if 

the two arguments are not equal.  

 
relation not_eq( lref<int> lhs_ 

                   , lref<int> rhs_)  { 

    return … 

} 
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In this case, it is straightforward to compare the two arguments 

and check if they are not equal. But if one of the arguments is 

not initialized, on what basis could we generate a sensible 

value(s) for such that it is not equal to the other? There are 

multiple possibilities but no single approach can be easily 

deemed to be any better than another. For instance, we could 

start at 0 and go on till we hit 

numeric_limits<int>::max(). Or we could start at 

numeric_limits<int>::min() continuing until 

numeric_limits<int>::max(). Perhaps even backwards 

starting from numeric_limits<int>::max().  

 

Attempting a search in such a wide-spanning range is rarely a 

very productive or useful way to solve problems. The futility of 

such an approach will seem even more obvious if we consider 

defining not_eq for string. Thus it only makes sense for 

lhs_ and rhs_ to be input-only parameters. By convention, 

names of input-only parameters contain a „_‟ suffix, and in-out 

parameters do not. 

 

Another such example is the relation size provided by Castor.  
 

relation size(lref<Cont>& cont_ 

        , lref<typename Cont::size_type> sz) { 

  return ... 

} 

 

The first argument is any standard container and the second 

argument represents the size of a container. It is straightforward 

to test if cont_ has size sz and also easy to generate a value 

for sz given an arbitrary container object. But, what if sz is 

initialized and cont_ is not? It makes no sense to come up with 

random containers having size sz with arbitrary elements. Thus 

we specify cont_ as an input-only parameter. 

 

In each of these cases, it is left up to the consumer of these 

relations to decide how the values for an input-only parameter is 

to be generated. 

I/O is not reversible. 
 

Backtracking by its very nature depends upon the ability to 

revert side effects when pursuing alternate paths of evaluation. 

I/O, on the other hand, is rarely something that can be reverted. 

Once some data has been written to a socket or a document has 

been printed, there is no going back. Thus I/O and backtracking 

are at odds with each other. There are two ways to make these 

co-exist. First option is demand support from all kinds of I/O to 

be reversible. This is clearly not practical. The second option is 

to turn a blind eye to any I/O that occurs during the evaluation of 

relations. This is the only practical way in which the two can be 

made to co-exist. However, it is up to the consumer of any 

relation that performs I/O to ensure that such side effects do not 

impact or interfere with the choices made during backtracking. 

They should be used in a way that is “backtracking-safe”. 

 

Relations write and read are examples of I/O relations in 

Castor. Consider the following misuse of read to check if the 

word read from stdin is either “Hello” or “World”. 

 
relation r = read("Hello") ^ read("World"); 

 

Although the declarative reading “read either Hello or World” 

is sound, it assumes that if the first read fails then its side 

effects will be reverted so that the second read can re-read 

the data. The correct way to perform this operation is to call 

read only once as follows: 

 
lref<string> w; 

relation r = read(w) &&  

       (eq(w,"Hello") ^ eq(w,"World")); 

 

Here we read the value, whatever it may be, into w, and then 

check if w is either “Hello” or “World”. 

 

6 Logic Programming 
Examples 

 

In this section we solve a few problems using LP to get a 

better feel for logic programming techniques.  

 

Factorial 
 

lref<int> j; 

relation r = range(j,1,10)  

       >>= reduce(j, std::multiplies<int>()); 

r(); 

cout << "Factorial of 10 = " << *j; 

Directed acyclic graphs. 
 

                                                                        

 
Figure 1 

 

Here we consider the problem of finding paths in the above 

directed acyclic graph consisting of 5 edges. The graph can be 

1 

3 

4 

5 

2 
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easily described in terms of its edges. In the following edge 

relation, each line represents a directed edge of the graph. The 

parameters n1 and n2 represent the start point and the end point 

of an edge respectively.  

 
// Representation of the directed edges in the 

DAG shown in figure 1 

relation edge(lref<int> n1, lref<int> n2) { 

  return eq(n1,1) && eq(n2,2)  

      || eq(n1,2) && eq(n2,3)  

      || eq(n1,3) && eq(n2,4)  

      || eq(n1,5) && eq(n2,4)  

      || eq(n1,5) && eq(n2,2)  

  ; 

} 

 

Given the definition of an edge we say that a path exists between 

two nodes Start and End if: 

 A directed edge exists between Start and End. OR 

 A directed edge exists between Start and some node 

(nodeX) AND a path exists from nodeX to End. 

This relation can thus be defined as follows: 

 
// Rule defining the meaning of a path 

relation path(lref<int> start, lref<int> end) { 

  lref<int> nodeX; 

  return edge(start, end) 

      || edge(start, nodeX) 

           && recurse(path, nodeX, end); 

} 

 

Given the relations edge and path above, we are in a position 

to ask many different questions concerning paths in the directed 

acyclic graph.  A simple question is to see if a path exists 

between any two nodes: 

 
relation p1_4 = path(1, 4); 

if(p1_4()) 

  cout << "Path exists from 1 to 4"; 

 

A typical problem in graphs is to find all nodes reachable from a 

particular node. The following code prints all nodes reachable 

from node 5. 

 
lref<int> node; 

relation p5 = path(5, node); 

while(p5()) 

 cout<< *node <<" is reachable from 5\n"; 

 

 

By leaving variable node uninitialized above, we are letting 

the computer generate values for it.  It is interesting to note 

that 4 is listed twice when the above code is executed. That is 

due to the fact that node 4 can be reached via two independent 

paths from node 5, and during the process of inferencing both 

paths are discovered. Similarly, leaving the first argument 

uninitialized and specifying 5 as the second argument, gives a 

list of all nodes from which node 5 can be reached. 

 

It is also possible to print all pairs of nodes between which a 

path exists by simply leaving both arguments to path 

uninitialized:  

 
lref<int> n1, n2; 

relation p = path(n1, n2); 

cout<< "Path found between these nodes\n"; 

while(p()) 

  cout << "(" << *n1 <<","<< *n2 << ") "; 

 

The above code will print the following pairs in order: (1,2) 

(2,3) (3,4) (5,4) (5,2) (1,3) (1,4) (2,4) (5,3) (5,4). Once again 

the pair (5,4) is listed twice as two paths were found from 5 to 

4.  

Finite Automata (FA) 
Finite automata can be represented in the form of a set of 

transitions and a set of final states. Class Nfa below encodes 

the nondeterministic finite automata (NFA) from figure 2 

which is equivalent to the regular expression ((ab)*ba) | b. It 

has two static member relations transition and final. 

Relation transition describes each transition in terms of 

the two states and the input character that make up the 

transition. Relation final specifies the final states in the 

NFA. 

 

A global relation run defines the rule for a successful run of 

any FA over an input string. The specific Finite Automata 

over which it operates is specified as a template parameter. 

The run defines that a run is successful if: 

 The input string is empty AND a final state has been 

reached, OR 

 There exists a transition from current state (st1) to 

some other state (st2) over the first character in the 

input string AND there is a successful run over the 

rest of the string starting from state st2. 
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RegEx: ((ab)*ba)|b 

Start State:  0 

Final States: 3, 4 

Figure 2 

 

Class NFA‟s static member relation transition describes the 

state transitions and member relation final describes the final 

states. Global relation run takes NFA as a template parameter.  

It executes the NFA over an input string by matching one of the 

possible transitions to the next character. 

 
class Nfa { // => ((ab)*ba)|b 

  static const char a = 'a', b = 'b'; 

public: 

  // transitions NFA  

  static relation transition( lref<int> st1 

                            , lref<char> ch 

                            , lref<int> st2) { 

    return  

       eq(st1,0) && eq(ch,a) && eq(st2,1) 

    || eq(st1,0) && eq(ch,b) && eq(st2,2) 

    || eq(st1,0) && eq(ch,b) && eq(st2,4) 

    || eq(st1,1) && eq(ch,b) && eq(st2,0) 

    || eq(st1,2) && eq(ch,a) && eq(st2,3) 

    ; 

  } 

 

  // all final states of the NFA 

  static relation final(lref<int> state) { 

    return eq(state,3) || eq(state,4); 

  } 

}; 

 

// determines successful run of a FA 

template<typename FA>  

relation run(lref<string> input 

                , lref<int> currSt=0) { 

  lref<char>   firstCh; 

  lref<string> rest; 

  lref<int>    nextSt; 

 

 return  

   eq(input,"") && FA::final(startSt) 

|| head(input,firstCh) && tail(input,rest) 

      && FA::transition(currSt,firstCh,nextSt) 

      && recurse(run<FA>, rest, nextSt) 

   ; 

} 

 

Given the above relations, any input string can be tested 

against the finite automata as follows: 
 

if( run<Nfa>("aabba")() ) 

    cout << "Matched"; 

else 

    cout << "No match"; 
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Query Expressions 
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