
- 1 -

Introduction to Logic Programming in C++
Roshan Naik (roshan@mpprogramming.com)

[DRAFT] Last updated: Aug 10
th

, 2010

Version History

Feb 11
th

 2008: Initial version.

Aug 10
th

 2010 (Castor 1.1):

 Removed references to GenerativeRelation.

 Moved out section on “Implementing Relations imperatively” from section 2 into its own top level

section 3.

 Rewrote section 3 on implementing relations imperatively.

 Added note about using pointers with lrefs in section 2.2.

 Added examples, other corrections.

mailto:roshan@mpprogramming.com

- 2 -

TABLE OF CONTENTS

1 THE LOGIC PARADIGM .. 3
1.1. Facts ... 3
1.2. Rules .. 4

1.2.1. Recursive rules ... 4
1.3. Queries and Assertions ... 4
1.4. Computation by inferencing ... 4
1.5. Summary .. 5

2 LOGIC PROGRAMMING IN C++ ... 5
2.1 Type relation .. 6
2.2 lref: Logic reference ... 6
2.3 Relation eq: The unification function ... 7
2.4 Evaluating Queries ... 7
2.5 Recursive Rules .. 8
2.6 Dynamic Relations ... 9
2.7 Inline Logic Reference Expressions (ILE) ..10
2.8 Sequences ..11

2.8.1 Generating Sequences ..11
2.8.2 Iterating over sequences ..11
2.8.3 Unification of Collections ..13
2.8.4 Summary ..13

2.9 Cuts – Pruning alternatives ...13
2.10 Relational Ex-Or operator ...14
2.11 Specifying Lref parameters types for relations ...15
2.12 Debugging ...15

3 IMPLEMENTING RELATIONS IMPERATIVELY 16
With relation predicate ..16
With relation eval ..17
As coroutines ...17

4 INLINE LOGIC REFERENCE EXPRESSIONS 18
Creating relations from ILEs ...19
Limitations of ILEs ..20
Summary ...20

5 LIMITATIONS OF LOGIC PARADIGM ... 20
Bi-directionality of lref arguments. ...20
I/O is not reversible. ..21

6 LOGIC PROGRAMMING EXAMPLES ... 21
Factorial 21
Directed acyclic graphs. ..21
Finite Automata (FA) ..22
Query Expressions ...24

7 REFERENCES .. 24

- 3 -

Abstract:

 This paper is an introductory tutorial for Logic paradigm (LP)

in C++. No prior experience is required with languages that

natively support LP. It also demonstrates how LP blends with

the other paradigms supported by C++ and also the STL. The

ability to choose an appropriate paradigm or an appropriate mix

of paradigms for solving a given problem is essential and at the

heart of multi-paradigm programming. We begin with a brief

introduction to the logic paradigm, followed by a discussion of

logic style programming in C++ and finally conclude with

examples. The primitives used here for logic programming are

provided by Castor, an open source C++ library available from

www.mpprogramming.com. No language extensions to C++ are

required to compile the code provided here.

1 The Logic paradigm
Logic programming is a Turing-complete programming

paradigm. The model of computation used in logic is strikingly

different from that of the more mainstream imperative and

functional paradigms. Pure logic programs are entirely

declarative in nature. When programming in languages based on

the imperative paradigm (like C, C++, Java etc.), programmers

actively instruct the computer how to solve a specific problem

and the computer itself has no knowledge about the problem.

Thus, algorithms play a central role. In logic programming

languages such as Prolog or Gödel, however, it is exactly the

opposite. In LP, the programmer provides problem-specific

information to the computer instead of providing the steps

required to solve a specific problem. The computer applies a

general-purpose problem-solving algorithm to the domain-

specific information to produce the desired results. The

programmer is not involved with specifying the exact steps (i.e.,

the algorithm) used in solving the problem.

Information provided to the computer in logic programs can be

classified into facts and rules. This knowledge base of facts and

rules describes the problem domain. Specific problems that we

wish to solve in this domain are posed as questions or queries.

The computer examines the query in the context of the rules and

facts and determines the solution. For example, if the game of

Chess (or some other board game) represents our problem

domain, the facts may consist of such things as:

- The different kinds of pieces (e.g., white pawns, black

pawns, white king, etc.)

- The number of pieces of each kind (e.g., 8 black pawns, 1

white king, etc.)

- A description of the number of squares and their layout on

the board (e.g., 8x8 board, 32 white squares, 32 black

squares, etc.)

And the rules may consist of:

- The rule governing the movement of each kind of piece on

the board (e.g., bishop moves diagonally)

- The rule to determine if a piece is under attack

- The rule to determine when a game is over and the result of

the game.

Typical questions that arise in Chess (and many other board

games):

- Given a specific layout of pieces on the board, what are

all the possible moves for a given piece?

- Given a specific board layout, which pieces can be moved

next?

- Which pieces are under attack in a given board layout?

Each question above represents a different but concrete

problem that belongs to the problem domain of Chess.

Shifting focus from describing how to solve a particular type

of problem to describing the general rules of the broader

problem domain allows us to seek answers to a wider variety

of problems within the domain. In the remainder of this

section we will further illustrate facts, rules and queries using

a simple example concerning family relationships. The

primary focus here is to get a feel for the basic mechanics of

LP.

1.1. Facts
Facts are essentially the simplest form of true statements

pertaining to a problem domain. They may also be referred to

as data. Let us consider a four -person family (Son: Sam,

Daughter: Denise, Father: Frank, Mother: Mary, Grandparent:

Gary. Here is one way of describing the facts pertaining to this

family more accurately:

 Children facts:

1. Sam is a child of Mary

2. Denise is a child of Mary

3. Sam is a child of Frank

4. Denise is a child of Frank

5. Frank is a child of Gary

 Gender facts

6. Frank is male

7. Sam is male

8. Mary is female

9. Denise is female

10. Gary is male

The above facts can be used to answer simple questions such

as “Is Sam male?”. This is a basic true/false question and can

be answered by inspecting the gender facts. Since we have an

exact match with fact 7, the answer to the question is “yes” or

“true”. However, a similar question “Is Frank female?” yields

“false” or “no”. This is because we do not have any gender

fact stating Frank‟s gender to be female. Thus, whenever

matching evidence is found, the answer is true; and false

otherwise.

A slightly different type of question is “What is the gender of

Sam?”. This is not a true/false question but it still can be

answered by looking up the gender fact 7. Another question

could be “Who is the child of Frank?” Again this is not a

true/false question, however, it is a little more interesting as

there is not one but two answers to it, Sam and Denise. This

- 4 -

tells us that we cannot simply stop examining the facts as soon

as the first match is found; we need to continue the search till all

relevant facts are exhausted. When there are multiple answers to

a question, the person asking the question may be interested in

one, some or all the answers.

A question that cannot be answered based solely on the above

facts is “Is Mary a parent of Sam?” This is because we have not

yet declared what it means to be a parent. There are no direct

facts stating any parent-of relationships. To solve this we can

add one fact of the nature “X is parent of Y” for each fact of the

nature “Y is child of X” above. This approach is cumbersome

and error-prone especially when the database of facts is large. A

better approach is to use rules to infer these new facts.

1.2. Rules
Rules are statements used to infer new facts (or data) from an

existing body of facts. Here are some simple rules pertaining to

the family relationships:

Parent rule: X is parent of Y if

 Y is child of X.

Father rule: X is father of Y if

 Gender of X is male and Y is child of X

Mother rule: X is mother of Y if

 Gender of X is female and X is parent of Y

Here X and Y are essentially parameters and not constants like

“Sam” and “Frank”. The parent rule provides the ability to

answer questions like “Is Mary a parent of Sam?” or “Who is a

parent of Sam?”. Note that the parent and father rules above are

specified only in terms of facts. The mother rule on the other

hand is specified using a combination of facts (gender) and rules

(parent) although it could be specified in same manner as the

father rule.

1.2.1. Recursive rules
Rules can also be specified in terms of themselves. Consider

describing the ancestor relationship as a rule.

Ancestor rule: X is ancestor of Y if

 X is parent of Y or

 Z is parent of Y and X is ancestor of Z

Now we are in a position to ask “Is Gary an ancestor of Sam?”

which should yield true. Similarly if we ask “Who is an ancestor

of Sam?”, it should yield Frank, Mary and Gary.

1.3. Queries and Assertions
Once we have built the knowledge-base consisting of facts and

rules we are ready to ask questions. Specific problems that need

to be solved are posed as queries. We have seen examples of

queries above for the family relationships. Other examples of

queries, for instance, when dealing with graphs is to ask “What

is the shortest path between nodes A and B?” or “Is graph G a

connected graph?”

Queries can be classified into two categories. The first kind

simply tests if a certain statement is true: “Is Sam child of

Gary?” These are also traditionally referred to as assertions,

since the purpose is to essentially check or assert whether a

fact is true. The second type of query is one that seeks for one

or more solutions. For example, if we ask “Who is the child of

Frank?”, we are not asserting if a fact is true, but instead

asking the system to determine Frank‟s child. We will

henceforth refer to these as generative queries as it requires

the generation of solutions.

1.4. Computation by inferencing
We have not been very specific, so far, about how answers are

actually computed (or inferred). Given the facts and rules

described above it is fairly intuitive for any individual to

mentally infer answers to all the questions we have asked. The

fundamental principle behind such inferencing of new facts

from existing rules and facts is referred to in formal Logic as

modus ponens:

 If A is true and

 A implies B,

 then B is true.

A and B, above, refer to arbitrary statements. This principle is

at the heart of the computational model used in logic

programming. An intuitive but rather rough approximation of

the algorithm used to solve queries in logic programming

systems such as Prolog is as follows:

1. Build a list of relevant facts and rules

2. Pick a relevant fact and see if it answers the question.

Repeat this until all relevant facts are exhausted.

3. Pick a relevant rule that can be applied to derive new

facts (using modus ponens). Repeat this until all

relevant rules and facts are exhausted.

At any step of the inferencing algorithm, there may be more

than one rule and/or fact that can be selected in order to

continue execution. Each choice leads to a different inference

path and not all paths necessarily lead to solutions. Paths that

do not lead to solutions are abandoned and inferencing

resumes from the most recent point where other facts and/or

rules were available for inferencing. Abandoning the current

path and resuming execution from an earlier point in order to

make a different choice is known as backtracking.

Backtracking continues till all paths of inference have been

traversed. Thus, computation is reduced to traversing different

paths of inference determined from the facts and rules

available. This is similar to performing depth first search in a

binary tree where leaf nodes represent candidate results and

the inner nodes represent intermediate results.

- 5 -

In pure formal logic, the exact order in which facts and rules are

selected for application is non-deterministic. This also implies

that the order in which answers are obtained is not deterministic.

Since some paths may lead to solutions quicker than others, in

practice the order of execution is fixed (same as declaration

order) to allow control over efficiency. Fixing the order of

application of rules also simplifies reasoning about the execution

of logic programs, which is important for debugging.

1.5. Summary
In this section we described facts, rules, queries, assertions and

inferencing. Facts are simply true statements. Rules can be used

to derive new facts. Rules can be specified in terms of facts,

other rules or even themselves (i.e. recursive rules). A collection

of rules and facts can be used to answer relevant questions.

Questions can be broadly classified into those that simply

require a true/false answer or those for which solutions need to

be generated. The former types of questions are referred to as

assertions and the latter referred to as generative queries.

Assertions have only one answer (i.e. true/false). Generative

queries may have zero or more solutions. “Is Sam male?” is an

example of an assertion. “Who is the child of Mary?” is an

example of a generative query. Logical inferencing is used to

answer questions. It involves examining the facts and application

of rules. New facts emerge from application of rules which

become candidates for future consideration during inferencing.

2 Logic Programming in C++
Now let us translate the above facts and rules into C++ so that

they can be executed. The examples here make use of Castor, an

open source library that enables logic programming in C++.

Castor enables embedding of logic style code naturally into C++

by allowing rules and facts to be declared as classes, functions or

even just expressions. This low level of integration is very useful

and allows for a programming platform where the paradigm-

boundaries are seamless.

The following C++ functions represent the child and gender

facts and the father rule (described previously) using Castor:

// c is child of p

relation child(lref<string> c, lref <string> p)

{

 return eq(c,”Sam”) && eq(p,”Mary”) //fact 1

 || eq(c,”Denise”) && eq(p,”Mary”) //fact 2

 || eq(c,”Sam”) && eq(p,”Frank”)//fact 3

 || eq(c,”Denise”) && eq(p,”Frank”)//fact 4

 || eq(c,”Frank”) && eq(p,”Gary”) //fact 5

 ;

}

// p’s gender is g

relation gender(lref<string> p, lref<string> g)

{

 return eq(p,”Frank”)&& eq(g,”male”) //fact 6

 || eq(p,”Sam”) && eq(g,”male”) //fact 7

 || eq(p,”Mary”) && eq(g,”female”)//fact 8

 || eq(p,”Denise”)&& eq(g,”female”)//fact 9

 ;

}

// f is the father of c

relation father(lref<string> f,lref<string> c)

{

 //... if f is male and c is child of f

 return gender(f,”male”)&& child(c,f);//rule2

}

Facts and rules are both declared as functions with the return

type relation. The parameter types are specified in terms of

template lref which stands for logic reference. Here it

provides a facility similar to the pass by reference mechanism

in C++. However, unlike references in C++, logic references

can be left uninitialized. The value underlying a logic

reference can be obtained by dereferencing it with operator *.

Function eq is called the unification relation. Its job is to

attempt to make its two arguments equal. If any one of its

arguments is an uninitialized logic reference, it will assign the

other argument to it. If both arguments have well defined

values then it simply compares the two arguments. This task is

referred to as unification. Consider the call eq(c,"Sam") in

relation child. If c has been previously initialized with a

value, eq will compare the contents of c with "Sam".

However if c has not been initialized, "Sam" will be assigned

to c. The type relation, logic references and relation eq

will be discussed further in sections 2.1, 2.2 and 2.3

respectively.

 Neither eq nor any of the user-defined relations like child or

gender return the results of their intended computation

immediately when invoked. Instead they return function

objects that encapsulate the intended computation. The

function objects can be stored in an object of type relation.

Their evaluation can be triggered by application of the

function call operator on relations. Given the above C++

definitions for the relations, we are in a position to make some

queries and assertions. The following is a simple assertion to

check if Sam is male:

relation samIsMale = gender("Sam", "male");
if(samIsMale())

 cout << "Sam is male";

else

 cout << "Sam is not male";

Similarly we can check if Frank is Sam‟s father:

relation samsDadFrank = father("Frank","Sam");

if(samsDadFrank())

 cout << "Frank is Sam's father";

else

 cout << "Frank is not Sam's father";

We can also issue generative queries such as “What is Sam‟s

gender?”:

lref<string> g; // g not initialized

- 6 -

relation samsGender = gender(“Sam”, g);

if(samsGender())

 cout << "Sam’s gender is " << *g;

else

 cout << "Sam’s gender is not known";

Here we pass “Sam” as the first argument and simply leave the

second argument undefined (i.e., not initialized to any value).

Note how the same function gender is used to assert if Sam is

male and also find out Sam‟s gender. When all the arguments

have been defined (i.e., initialized to some value) it performs a

check to see if they satisfy the gender relation. Arguments that

have been left undefined will act as output parameters and will

be initialized with a value that satisfies the gender relation. This

bidirectional nature of the lref parameters behaving as input or

output is central to the logic programming model. It is important

to note, however, that lref parameters on relations typically do

not act as both input and output simultaneously as is often the

case when using the pass-by-reference scheme in functions like

swap.

What happens if both arguments to gender relation are

undefined?

lref<string> p, g; // p and g not initialized

relation anyPersonsGender = gender(p, g);

if(anyPersonsGender())

 cout << *p << "’s gender is " << *g;

In this case both p and g will be assigned values by gender.

Since the person-gender pair (“Frank”, “male”) is declared first

in the gender relation, p will be assigned “Frank” and g will

be assigned “male”.

Generative queries, such as samsGender and

anyPersonsGender above, may have zero, one or many

solutions. So far we have only generated the one solution from

them. Iterating over all solutions, quite naturally, involves the

use of a while loop instead of the if statement we have used so

far. The previous example can be rewritten to print all persons

and their genders as follows:

while(anyPersonsGender())

 cout << *p << "’s gender is " << *g << "\n";

Similarly for listing of all Frank‟s children:

lref<string> c;

int count=0;

relation franksChildren = father("Frank", c);

while(franksChildren()) {

 ++count;

 cout << *c << " is Frank's child\n";

}

// c is now back to its uninitialized state
cout << "Frank has " << count << " children";

Once all solutions have been exhausted, invoking

franksChildren() returns false and causes the while loop

to terminate. Also, when all solutions have been exhausted,

logic reference c will be automatically reset to its original

uninitialized state.

Notice how the ability to use fundamental imperative

constructs like the if statement and the while loop makes the

transition between the logic programming model (in which

results are generated) and the imperative model (in which the

results are consumed) simple and seamless.

Function eq, template type lref and type relation along

with overloads for operators && and || provide the foundation

for logic programming in Castor. They are described briefly in

the following sections. For an in depth coverage of their

design and implementation, refer to [CastorDesign].

2.1 Type relation
In logic programming it is common to refer to facts and rules

as predicates or relations. The term “relation” originates in

set theory where it is used to imply an association between

sets. So, gender is a binary relation between a set of

individuals and the set of genders. Generally a strict

distinction between rules and facts is not required when

programming with Castor as they can be mixed freely within

the same function/expression
1
. Keeping with logic

programming lingo, we will henceforth refer to functions that

represent facts or rules as relations. So, functions with return

type relation are themselves referred to as relations.

The type relation internally represents a function or

function object with no arguments and return type bool. Thus

child, gender and father return a function object that can

be evaluated later in a lazy manner.

2.2 lref: Logic reference
Template type lref is an abbreviation for logic reference and

provides a facility for passing values in/out of relations in the

form of arguments, similar to references in C++. Unlike C++

references, a logic reference does not have to be initialized and

provides the member function defined for checking if it has

been initialized. The dereference operator * and the arrow

operator -> can be applied to access the value referred to by a

logic reference.

Now let us understand the initialization semantics of lref.

This is helpful reasoning about operational semantics of

relational code. When an lref<T> is initialized (i.e.,

constructed) or assigned a value of type T (or a type

1
 This is different from the approach taken in classical logic

programming systems like Prolog. The general approach

taken by Castor, of how to blend relations syntactically with

the imperative languages, was pioneered by Timothy Budd in

his multiparadigm language Leda. Although Castor

shamelessly steals this idea from Leda, the underlying

implementation techniques diverge significantly.

- 7 -

convertible to T), it internally stores a copy of the value. When

initialized with another lref<T> (i.e., copy constructed), both

logic references will be bound together. References that are

bound together will refer to the same underlying value (if any).

Thus any change to the underlying value of one logic reference

is observed by all logic references that are bound together. A

binding between logic references cannot be broken. That is, if

logic references A and B are bound together and C and D are

bound together, then C‟s binding with D cannot be broken in

order to form a binding with A and B. C will continue to be a

part of the binding for the duration of its lifetime. Logic

references can only be bound by initialization (i.e., copy

construction) and not by assignment. A binding can only be

formed during construction of the logic reference and will be

automatically broken when the logic reference is destroyed.

When the last logic reference that is part of the binding is

destroyed, it will deallocate the underlying value.

Starting with Castor 1.1, pointers to objects can also be used to

initialize an lref. When using pointers we must specify whether

the lref should manage the lifetime of the object referenced by

the pointer. For example:

//lifetime of "Roshan" will be managed

lref<string> s(new string("Roshan"), true);

//lifetime of name will not be managed

string name="Naik";

lref<string> s2(&name, false);

Assignment with pointers is performed using method set_ptr:

string str="Castor";

s.set_ptr(&str, false); // deallocates "Roshan".

Will not manage lifetime of str

Although using pointers to assign objects to lrefs is useful

(especially when mixing paradigms) and efficient, it can also be

dangerous if not used carefully. Great care should be taken

when specifying the lifetime management policy. For instance, if

the pointer refers to an object on the stack, the lref should not be

requested to manage its lifetime. Similarly, if two independent

lrefs are made to refer to the same object using pointer

assignment / initialization, both should not be requested to

manage the lifetime of the object. Programmer must ensure that

the objects being handed over to lrefs using pointers continue to

exist as long as the lrefs can attempt to access them. Also,

accidentally specifying lifetime management policy to false

when true is intended will cause memory leaks.

2.3 Relation eq: The unification
function

Function eq is the unification function and takes two arguments.

The arguments may be logic references or regular values. eq

returns an expression (i.e., function object) which when

evaluated attempts to unify the two arguments. If unification

succeeds it returns true; otherwise it return false. Unification

performed by eq is defined as follows:

- If both arguments are initialized, their values are

compared for equality and the result of comparison is

returned.

- If only one argument is initialized, the uninitialized

argument will be assigned the value of the initialized

one in order to make them equal.

- If both arguments are uninitialized, an exception is

thrown.

So unification will generate a value for the uninitialized

argument to make both arguments equal, or it will compare its

arguments if both are initialized. In short, unification is a

“generate or compare” operation. It is possible to implement

other variations to unification, but is generally not required.

The expressions returned by the various calls to eq within, for

instance, the gender relation are stitched together to form a

bigger compound expression using || and && operators. It is

important to note that the resulting compound expression is

returned without being evaluated. These expressions are

evaluated in a lazy manner. In other words, these expressions

are stored in an object of type relation and will be subject

to evaluation in the future when needed. The following section

examines the evaluation of these expressions in detail.

2.4 Evaluating Queries
Given the above relations, we can formulate the query that

tests for “Is Sam male?” and store it in a variable samIsMale as

follows:

relation samIsMale = gender("Sam", "male");

The call gender(“Sam”,“male”)does not perform any real

computation; it simply returns a function object that can be

later executed to determine if Sam is male. Invocation of a

relation does not execute/evaluate it. This splitting of

invocation from execution is a case of lazy evaluation. In

order to execute this expression we simply apply the function

call operator on the variable that holds the expression:

 if(samIsMale())

 cout << "Sam is male";

 else

 cout << "Sam is not male";

The gender relation was defined previously as follows:

// p’s gender is g

relation gender(lref<string> p,lref<string> g)

{

 return eq(p,"Frank") && eq(g,"male")

 || eq(p,"Sam") && eq(g,"male")

 || eq(p,"Mary") && eq(g,"female")

 || eq(p,"Denise") && eq(g,"female");

}

- 8 -

Since “Sam” and “male” were passed as arguments to gender,

the expression returned by gender looks as follows with the

arguments substituted:

 eq("Sam", "Frank") && eq("male", "male")

|| eq("Sam", "Sam") && eq("male", "male")

|| eq("Sam", "Mary") && eq("male", "female")

|| eq("Sam", "Denise") && eq("male", "female")

This expression contains four && expressions joined by three ||

operators. If any one of these && expressions returns true, the

overall expression has been solved and evaluation halts in order

to report success. Let us step through the execution that takes

place when operator() is applied to samIsMale. The first

expression eq(“Sam”, “Frank”) && eq(“male”, “male”)

is chosen for evaluation. An attempt to unify “Sam” with

“Frank”, when evaluating eq(“Sam”, “Frank”), fails as

“Sam” is not equal to “Frank”. Short-circuit evaluation principle

tells us that the remainder of this && expression does not need to

be evaluated. Thus, this path of execution is abandoned

immediately and backtracking will resume execution from the

next && expression eq(“Sam”, “Sam”) && eq(“male”,

“male”). This time both halves of the && expression unify

successfully as their arguments are equal. A solution to the

expression has been found and true is returned to the caller

which happens to be the if statement.

If the function call operator is applied once again to samIsMale,

execution resumes from the point at which it was previously

halted. In this case the third && expression is chosen for

evaluation, which fails due to failure in unification of “Sam” and

“Mary”. This leads to evaluation of the fourth and final &&

expression which also fails for similar reasons and false is

returned to the caller. All && expressions have now been

evaluated and applying the function call operator to samIsMale

henceforth will immediately return false.

Now let us consider how to specify generative queries such as

“What is Sam‟s gender?”. Such a query is constructed by calling

gender with first argument initialized to “Sam” and leaving the

second argument uninitialized:

lref<string> g; // g not initialized

relation samsGender = gender(“Sam”, g);

if(samsGender())

 cout << “Sams gender is ” << *g;

Notice how it is possible to use the same gender relation to

both assert if someone is male and to find the gender of a given

individual. When a solution is found, g will be initialized to

“male”. The expression returned by gender(“Sam”, g)now

looks like this once we substitute the arguments:

 eq("Sam","Frank") && eq(g,"male")

|| eq("Sam","Sam") && eq(g,"male")

|| eq("Sam","Mary") && eq(g,"female")

|| eq("Sam","Denise") && eq(g,"female")

When operator() is applied to samsGender for the first

time, the first && expression fails evaluation as “Sam” does

not unify with “Frank”. Backtracking proceeds to try out the

second expression eq(“Sam”, “Sam”) && eq(g,

“male”). Unification of “Sam” with “Sam” succeeds and

then eq(g, “male”) is evaluated. Since g is undefined, eq

will assign “male” to g and thus unification succeeds.

Evaluation of the entire expression halts and returns true to

the calling if statement. If operator() is again applied to

samsGender, execution will resume from the point it was

previously halted. However, one very interesting thing

happens before execution proceeds. It is critical that side

effects occurring in the previous path of execution must be

undone before attempting a different alternative. If side effects

are not reverted before backtracking pursues another

alternative, the side effects can affect the results of future

evaluations and lead to incorrect results. Thus unification of g

with “male” has to be reverted causing g to go back to its

original uninitialized state. This undo feature is automatically

provided by the unification function eq.

The above query has only one solution, but as we observed

previously, queries can have multiple solutions. For instance,

we may want to find all males in the system. Once again we

resort to the gender relation, but this time we leave the first

argument uninitialized and initialize the second argument to

“male”:

 lref<string> person;

 relation males = gender(person, "male");

 while(males())

 cout << *person << " is male\n";

This time around we repeatedly invoke males() till it

returns false. Each invocation of males triggers the search

for the next solution, i.e., a suitable value for the logic

reference person. Each time around the loop, person is

assigned a different value representing a solution. When all

solutions have been discovered, males() returns false, the

loop terminates and backtracking will restore person to its

original uninitialized state. Since person does not refer to

anything after the while loop has terminated, any attempts to

access the underlying value using operator * or operator ->

will throw an exception.

2.5 Recursive Rules
Recursion is often essential when declaring rules in the logic

paradigm. For the family relationships example, let us

consider defining a rule for the “ancestor” relationship. Note

that there can be arbitrary levels of parent-child relationships

between an ancestor and a descendant. We can recursively

define the rule as:

A is an ancestor of D if:

 D is a child of A, OR

 D is a child of some P AND A is an ancestor

of P

- 9 -

This lends itself naturally into the following definition for the

ancestor relation:

// Flawed recursive definition

relation ancestor(lref<string> A

 , lref<string> D) {

 lref<string> P;

 return child(D, A)

 || child(D, P) && ancestor(A, P);

}

However, the above C++ definition contains infinite recursion.

The return statement contains a recursive call to the ancestor.

In order to break the recursion we need to postpone the recursive

invocation so that it only takes place if truly needed. Castor

provides helper relation recurse for defining recursive rules.

recurse takes the relation that needs to be called recursively

and the arguments that need to be used for the call. It returns a

function object which when evaluated leads to the actual

recursive call to ancestor. The problematic call

ancestor(A,P) is simply rewritten as recurse(ancestor,

A, P):

relation ancestor(lref<string> A

 , lref<string> D) {

 lref<string> P;

 return child(D,A)

 || child(D,P)

 && recurse(ancestor, A, P);

}

In the above example, recursion is performed on relation

ancestor that is defined as a global function. Usage of

recurse is the same for static member relations too. For

recursing on non-static member relations, the this pointer

needs to be provided in addition to the method name and

arguments as follows:

recurse(this, &Type::method, ..args..)

2.6 Dynamic Relations
Definitions of all relations described so far have been fixed at

compile time. Relation gender, for instance, provides a definite

list of name-gender pairs that does not change at run time. But

when this gender information is available only dynamically (say

from a file or database), we need an alternative mechanism to

build the set of clauses for the relation. Here we have relation

gender, from section 1, which statically defines all the

information.

// statically defined relation

relation gender(lref<string> p, lref<string> g)

{

 return eq(p,"Frank") && eq(g,"male")

 || eq(p,"Sam") && eq(g,"male")

 || eq(p,"Mary") && eq(g,"female")

 || eq(p,"Denise") && eq(g,"female");

}

Let us assume this information regarding each person‟s gender

has been read from a file or database into a

list<pair<string,string>> called genderList. Let the

first item in the pair be a name and the second be his gender.

We can now define relation gender_dyn, based on

genderList as follows:

list<pair<string,string> > genderList = ...;

// dynamically building a relation

Disjunctions gender_dyn(lref<string> p

 , lref<string> g)

{

 Disjunctions result;

 list<pair<string,string> >::iterator i;

 for(i=genderList.begin();

 i!=genderList.end(); ++i)

 result.push_back(

 eq(p,i->first) && eq(g,i->second)

);

 return result;

}

Here we use the type Disjunctions to dynamically build the

set of OR clauses for the relation. Type Disjunctions is

itself a relation that supports dynamic addition of clauses.

Thus we can trigger evaluation on it using operator(). The

return type of gender_dyn has also been changed from

relation to Disjunctions. This is optional but useful, as it

implicitly conveys the dynamic nature of gender_dyn to

consumers. Conceptually Disjunctions is simply a

collection of relations. When a Disjunctions instance is

evaluated, the relations contained in it are treated as if there

exists an operator || between each pair of adjacent

relations. Relations can be added at the front or at the back of

a Disjunctions relation using methods push_back and

push_front. During evaluation, the contained relations are

evaluated from front to back. Notice how an entire relational

expression eq(p,i->first) && eq(g,i->second) is

added to the Disjunctions.

Relations Conjunctions and ExDisjunctions are also

provided for building relations dynamically. They correspond

to operators && and ^ respectively. The relation gender is

redefined below using Conjunctions and Disjunctions.

Disjunctions gender_dyn(lref<string> p

 , lref<string> g) {

 Disjunctions result;

 Conjunctions conj1 = eq(p,"Frank");

 conj1.push_back(eq(g,"male"));

 Conjunctions conj2 = eq(p,"Sam");

 conj2.push_back(eq(g,"male"));

 Conjunctions conj3 = eq(p,"Mary");

 conj3.push_back(eq(g,"female"));

 Conjunctions conj4 = eq(p,"Denise");

- 10 -

 conj4.push_back(eq(g,"female"));

 result.push_back(conj1);

 result.push_back(conj2);

 result.push_back(conj3);

 result.push_back(conj4);

 return result;

}

In summary, Conjunctions, Disjunctions and

ExDisjunctions together provide a facility for defining

relations dynamically. This ability also naturally makes them a

facility for runtime metaprogramming in the Logic paradigm.

2.7 Inline Logic Reference
Expressions (ILE)

One may often encounter cases where the relations are simple

operations to be performed on logic references using standard

operators like +, -, etc. For instance, assuming the existence of a

relation multiply for querying/asserting the product of two

numbers, we can obtain the cube of a number as:

lref<int> n=2, sq, cu;

multiply(sq,n,n) && multiply(cu,sq,n)();

cout << *cu ;

Using multiply the square is generated and from the square

we obtain the cube. How would the above code look for

computing the expression n*5-n/2+5? It is evident that writing

out simple arithmetic expressions involving more than a couple

operators gets verbose and unreadable quickly. Castor allows

inline specification of expressions composed from standard

operators and at least one logic reference. The cube example can

now be rewritten more concisely:

lref<int> cu, n =2;

eq_f(cu, n*n*n)();

cout << *cu;

Relation eq_f unifies its first argument with the result of

evaluating its second argument, which is a function object. It is

important to note that the value of n*n*n is not computed when

it is passed to eq_f. Since the expression is composed using an

lref it is turned into a function object and then passed to eq_f.

The function object undergoes evaluation when the evaluation of

eq_f kicks in. At the time of evaluation, n must be initialized, as

accessing the value of an uninitialized lref results in an

exception. Arbitrary expressions, such as n*5-n/2+5, composed

of lrefs and common overloadable operators, can be used to

construct function objects easily:

eq_f(cu, n*5-n/2+5)();

Such inline specification of expressions involving logic

references is called ILE, short for “Inline Logic reference

Expression”. ILEs come in handy in a variety of situations.

Printing to console with relation write_f is another example

where they can be used. The following example demonstrates

the use of ILE for printing two strings separated by a comma:

lref<string> ls=”Hello”; string s=”world”;

write_f(ls + string(",") + s)();

Relation write_f takes a function or function object as

argument and prints the result of the evaluation of its

argument to stdout. We use an ILE in the above example to

conveniently instantiate a function object and pass it to

write_f. ILEs can be used as arguments to any relation

provided by Castor suffixed with _f.

If T is the result type of an ILE, then all overloadable

operators defined over T other than comma, dereference

operator *, &, and -> can be used on lref<T> to produce an

ILE. Currently ILEs lack support for mixing in objects of an

arbitrary type T2 even if relevant operators are defined over T

and T2. Thus,

write_f(ls + ",")(); //compiler error

fails even though operator + is defined for arguments of type

string and const char*.

So far we have used ILEs to easily pass expressions to other

relations. ILEs that produce a boolean value can be used to

create simple relations inline. Consider the following relation

that prints the result of the comparison of its arguments.

relation greaterLessEq(lref<int> n

 , lref<int> cmpVal) {

 return write(n) && write(" is ") &&

 (predicate(n<cmpVal) && write("lesser")

 || predicate(n>cmpVal) && write("greater")

 || write("equal"));

}

Here, the ILE expressions predicate(n<cmpVal) and

predicate(n>cmpVal) are used to conveniently define

comparison relations directly inline instead of defining global

less or greater relations to do the same job. Similarly,

predicate(n%2==0) can be used to create an inline relation

to test for even numbers, or one could conceive more complex

expressions like predicate(n*2 >= cmpVal*n/2). It is

important to note that relations defined using ILEs do not have

the ability generate solutions. They will only assert if the said

condition is true/false. Thus, predicate(n<cmpVal) will

not generate values for n or cmpVal. All logic references

involved in a relation are required to be initialized at the time

when evaluation of the ILE occurs; otherwise an exception

will be thrown. The exception will be thrown directly by any

uninitialized logic reference when the ILE attempts to

dereference it for evaluation. A more detailed discussion on

ILEs is presented in section 4.

- 11 -

2.8 Sequences
Castor provides facilities for working with standard C++

sequence containers and iterators in a relational fashion. Tasks

associated with sequences can be broadly categorized into those

producing sequences and those iterating over the elements in it

(i.e., consuming). Often, in traditional logic programming (as in

functional programming or C++ template metaprogramming),

operations requiring modifications to a sequence are performed

by creating a new sequence reflecting the necessary changes.

Deletion of elements in a sequence is done by producing a new

sequence without the unwanted elements. Thus deletion of

elements is a combination of iteration over the original sequence

and producing another sequence. Addition of new elements can

also be performed in a similar fashion. Modifying values of

elements can be considered an operation on the element and not

on the sequence itself.

Although it is possible to write relations where deletion or

insertion of elements is reflected directly in the original

sequence, we will restrict ourselves to traditional logic style

techniques. The following sections describe some of the

common tasks surrounding sequences.

2.8.1 Generating Sequences

Sequences are created using the sequence relation. The

following defines a relational expression that creates a list of

three even numbers.

lref<list<int> > le;

relation evens = sequence(le)(2)(4)(6);

// see what it generates

if(evens())

 copy(le->begin(), le->end()

 , ostream_iterator<int>(cout, " "));

The uninitialized logic reference le is passed as the first

argument to relation sequence. The elements used for

constructing the sequence are then consecutively passed

individually to whatever is returned by the preceding function

call. Since le is not initialized, when the sequence relation is

evaluated in the condition of the if statement, le will be

initialized to a list<int> containing values 2, 4 and 6. Note

that the sequence relation automatically figures out (from the

type of its first argument) if you are interested in creating a

list<int> or vector<string> or some other sequence

type. This ability is useful when writing generic code.

Abilities of the sequence relation go further. Sequences can

be created not just out of simple values, but also from other

sequences, logic references or an arbitrary mix of these. In the

following code we create a list of strings using a mix:

string s = "One";

lref<string> lrs = "Two";

vector<string> ls;

ls.push_back("Three"); ls.push_back("Four");

vector<string> lsTemp;

lsTemp.push_back("Five");

lsTemp.push_back("Six");

lref<vector<string> > lrls = lsTemp;

// create the sequence into ln

lref<vector<string> > ln;

relation numbers =

 sequence(ln)("Zero")(s)(lrs)(ls)(lrls);

// see what it generates

if(numbers())

 copy(ln->begin(), ln->end()

 , ostream_iterator<string>(cout," "));

A current limitation when creating a sequence from other

sequences is that, all sequences involved should be of the

same kind. That is, lref<list<int> > cannot be created

directly from a vector<int> or lref<vector<int> >

and vice versa. However, this limitation is easily circumvented

using sequence‟s support iterators as follows:

vector<int> vi;

vector<int>::iterator b1, e1;

lref<list<int> > lrli1;

// generate using iterators to vi

relation r =

 sequence(lrli1)(vi.begin(), vi.end());

lref<vector<int> > lrvi;

lref<list<int> > lrli2;

lref<vector<int>::iterator> b2, e2;

// generate using lref<iterator> to lrvi

relation r = begin(b2, lrvi) && end(e2, lrvi)

 && sequence(lrli2)(b2,e2);

The relations begin and end will produce logical references

that point respectively to the beginning and one past end of the

sequence referenced by lrvi. The iterators are produced in a

lazy fashion, i.e., only if and when they are actually evaluated

in the future. The logic references produced by begin and

end are subsequently provided to sequence for

constructing lrli2. In general, care must be taken to avoid

performing eager evaluations on logic references as they are

typically initialized with appropriate values when

backtracking and unification occurs.

2.8.2 Iterating over sequences

Relations head, tail, next and prev are provided for

iterating through sequences. Relations head and tail

provide relational style iteration that is also similar to how

iteration is performed in functional languages. Relations next

and prev provide support for iterating with iterators that is

closer to iteration techniques in traditional C++.

- 12 -

2.8.2.1 Iterating with head and

tail
 In this technique to iterate over all elements in a sequence

container (like a list or vector), we split it into its head (i.e., the

first element) and tail (i.e., collection of remaining elements).

Splitting the tail again into its head and tail produces the second

element in the original container. In this fashion we can continue

to split the tail recursively till the tail is empty. The following

example demonstrates the use of relations head and tail for

printing all values in a list of integers.

relation printList(lref<list<int> > li) {

 lref<int> h;

 lref<list<int> > t;

 return head(li, h) && write(h) && write(",")

 && tail(li, t)

 && recurse(printList,t);

}

list<int> li;

// .. add numbers to list ..

printList(li)();//print elements

Relation head_tail is available for conveniently obtaining

the head and tail directly in a single call. The return statement

above can be rewritten using head_tail as follows:

return head_tail(li,h,t)

 && write(h) && write(",")

 && recurse(printList,t);

In cases where the tail is only used if a certain condition is true,

then relations head and tail can be used more efficiently by

computing the tail after evaluating the condition. Since

computing a tail is an O(n) operation it makes sense to delay

computing the tail after determining that it will be needed. A

typical example of this is when searching for a vale in a list.

Once the value of interest is found, the remainder of the list does

not need to be processed. In cases like printList, where it is

obvious that tail is always processed, head_tail may be

preferred for sake of brevity.

Similar to head and tail, there also exists head_n and

tail_n when the first or last n elements in the sequence are of

interest. The following example generates the first and last two

items from a vector containing four items.

int a[] = { 1,2,3,4 };

vector<int> v (a+0, a+4);

lref<vector<int> > h;

lref<vector<int> > t;

head_n(v, 2, h)();

// now h contains {1,2}

tail_n(v, 2, t)();

// now t contains {3,4}

The extra argument is used to specify the number of head/tail

items we are interested in. Exception will be thrown if the size

of the sequence is less than the specified head/tail size.

2.8.2.2 Iterating with next and

prev
Relation next represents a binary relation between a value

and its successor. Since the successor of an iterator/pointer is

another iterator/pointer that points to the next element in the

sequence, we can use next to perform iteration. The

following simple example prints the successor of 2:

lref<int> s;

next(2,s)();

cout << *n;

next can also be used to generate a predecessor:

lref<int> p;

next(p,2)();

cout << *p;

When both arguments are defined next will assert if the

second argument is a successor of the first. An exception will

be thrown if both arguments are undefined. Similar to next,

relation prev is also available. The only difference between

the two is that the order of arguments is reversed. next and

prev can be used interchangeably depending on

programmer‟s preference of which one is more readable in a

given context.

The following example demonstrates use of next to print all

items bounded by a pair of iterators.

relation printAll(lref<int*> beg_

 , lref<int*> end_) {

 lref<int> val; // for storing **beg_

 lref<int*> n;

 return predicate(beg_==end_)

 ^ (dereference(beg_, val)

 && write(val)

 && next(beg_,n)

 && recurse(&printAll,n,end_));

}

int ai[]={1, 2, 3};

printAll(ai+0, ai+3)();

Relation printAll traverses through the items by recursively

producing the successor to iterator beg. In each recursive step

a check is performed to ensure that sequence is not empty by

comparing beg to end. If there are elements in the sequence,

we dereference beg (in a relational manner using

dereference) to produce the underlying value and print it

using write. After printing the first item, we proceed to

recursing on the remainder of the sequence by producing

successor of beg in n. The above example can also be

rewritten in terms of iterators from the standard library, such

- 13 -

as vector<int>::iterator, instead of simple pointer based

iterators, by simply substituting occurrences of int* with

vector<int>::iterator in the above example.

2.8.2.3 Iterating with item
Relations next and prev are useful in cases when explicit

control over the iteration process is required. In cases when the

intent is to simply produce all the values in a sequence one by

one, relation item provides a simpler alternative. item takes 3

arguments; the first two are a pair of iterators (or a pair logic

references to iterators) representing the sequence and the third

argument is logic reference. An element from the sequence is

produced in the third argument for each evaluation of item. The

first two arguments must be defined.

int ai[] = { 1, 2, 3, 4 };

vector<int> vi(ai+0, ai+4);

lref<int> val;

// 1 – iterating with regular iterators

relation r = item(vi.begin(), vi.end(), val);

while(r())

 cout << *val << ",";

// 2 - iterating with logic references to

// iterators

lref<vector<int>::iterator> lBeg = vi.begin()

 , lEnd = vi.end();

r = item(lBeg, lEnd, val);

while(r())

 cout << *val << ",";

In the above code, the third argument is left undefined in order

to produce values from the sequence. item can also be used to

assert if a particular value is present in the sequence simply by

defining the third argument to the value of interest:

if(item(vi.begin(),vi.end(),4)())

 cout << "found!";

2.8.3 Unification of Collections

Unification facilities provided by relation eq as discussed in

section 2.3 above is not limited to scalar value types. Unification

can be performed on collection types in a similar fashion.

// produce a sequence

int a[] = { 1,2,3,4 };

vector<int> v (a+0, a+4);

lref<vector<int> > lrv;

eq(lrv,v)();

assert(*lrv==v);

// compare items

lref<list<int> > lrl= list<int>(a+0,a+4);

if(eq(lrl,v)())

 cout << "*lrl and v are equal” ;

Relation eq provides the basic unification support for

collections (i.e., sequences). In section 2.8.1 we discussed how

sequence can be used to generate sequences. When the first

argument is not initialized, sequence generates a sequence

filled with the elements specified in the remaining arguments.

However, if the first argument is initilized, it will perform

comparison of the elements in the first argument with the

items from the remaining arguments. This makes sequence

a powerful unification facility for sequences. We have already

seen examples of producing sequences in 2.7.1. The following

example demonstrates its use for comparison.

int a[] = {1,2,3};

lref<list<int> > lrl= list<int>(a+0,a+3);

lref<int> lri=1;

vector<int> v; v.push_back(2);

relation r =

 sequence(lrl)(lri)(v.begin(), v.end())

 (3);

assert(r()); // evaluation succeeds

Unlike eq, sequence allows creation/comparison of

sequences using any mix of other sequences, iterators, lrefs of

other sequences etc.

2.8.4 Summary
There are conceivably many ways of working with

collections/sequences and Castor only provides support for a

few useful ones. We can deal with collections directly as a

whole or via iterators. Relations item, next, prev and

deref are lightweight facilites which deal with collections

using iterators. Relations eq, sequence, head, tail,

item allow working with whole collections directly.

sequence is the most feature-rich and flexible, but is also

heayweight compared to the alternatives. Other relations such

as empty, size, insert, merge, eq_seq, etc., are also

available for working with collections and iterators. Refer to

the reference manual for a complete list.

2.9 Cuts – Pruning alternatives
It is sometimes useful to discard paths that will not produce

solutions or will produce duplicate solutions when

backtracking occurs. Such explicit pruning of paths is often

done for efficiency reasons. There is no reason to waste time

on pursuing alternative paths that are known to fail or not

produce anything of interest (e.g., duplicates of previously

found solutions). Consider the following relation that searches

through a binary search tree for a given value:

// Binary search tree

struct BST {

 BST* l; // left subtree

 BST* r; // right subtree

 int value; // current node

 ...

};

relation b_search(lref<int> val

 , const BST* tree) {

- 14 -

return

 predicate(val==tree->value)

 || predicate(val<tree->value)

 && recurse(b_search, val, tree->l)

 || predicate(val>tree->val)

 && recurse(b_search, val, tree->r)

 ;

}

Relation b_search consists of three clauses. The first clause

simply checks if the value of the current node matches the

argument. The remaining two clauses will search recursively on

the left and right sub trees depending on how val compares

with the current node. If the first equality comparison succeeds,

it is evident that the remaining clauses can be discarded. Once

any of the comparison operations succeed we would like the

backtracking mechanism to stay committed to the current clause

and ignore other alternatives. The facility for eliminating

alternative paths is typically called a cut in logic programming.

Class cut and relation cutexpr provide support for cuts in

Castor. We can rewrite the above relation using cuts as follows:

relation b_search(lref<int> val

 , const BST* tree) {

return cutexpr(

 predicate(val==tree->val) && cut()

|| predicate(val<tree->val) && cut()

 && recurse(b_search, val, tree->l)

|| predicate(val>tree->val)

 && recurse(b_search, val, tree->r)

);

}

Each occurrence of cut() marks the point at which we decide

to commit to the current clause. The location of a cut() is

called a cut point. A cutexpr only marks the boundaries

within which pruning of alternatives takes place. In this case

cutexpr(…) spans the all three clauses in the relation. Once

the execution reaches one of the cut points, it will stay

committed to the path beginning from the start of the cutexpr

to the cut point. Thus all other alternatives available after

“cutexpr(” begins will be discarded (or cut out) from

consideration by the backtracking mechanism. Cuts do not affect

the alternatives that existed prior to the cutexpr or the

alternatives that exist after a cut point. The cutexpr itself

merely provides the scope or the extent within which the cut

operation takes place.

A cut point without a surrounding cutexpr, or a cutexpr

without any cut points are both meaningless. Such occurrences

can sometimes occur accidentally when removing cuts from a

relation that currently makes use of cuts. By design, such

mismatched occurrences will produce compilation errors.

Following usage of cuts wherein a cutexpr(…) appears in the

caller and a cut() appears in the callee is also not allowed:

// Error: cannot dynamically nest cuts
relation outer(...) {

 return cutexpr(inner(..) || ...);

}

relation inner() {

 return ... && cut() ...

}

Excessive usage of cuts in logic programming is generally

discouraged since they tend to make logic programs less

readable. Also, when not used with care, they can incorrectly

prune out valid paths. Their usage should be preferred

primarily in situations where it leads to a reasonable gain in

performance. It is desirable for a relation that uses cuts, to also

produce the same results when the cuts are removed. Cuts that

do not alter the results of a relation are referred to as green

cuts. Cuts that are not green are called red cuts. Many usages

of cuts can be rephrased more elegantly using the relational

ex-or operator.

2.10 Relational Ex-Or operator
We have seen operators && and || used to define relations.

Castor also provides support for defining ex-or semantics

between clauses in a relation using the operator ^. It is useful

in expressing the idea that the second clause should be

attempted only if the first clause fails. Let us revisit the

greaterLessEq example.

relation greaterLessEq(lref<int> n

 , lref<int> cmpVal) {

 return predicate(n<cmpVal) &&

write("n<cmpVal")

 || predicate(n>cmpVal) &&

write("n>cmpVal")

 || write("n==cmpVal");

}

The following usage of greaterLessEq exposes a problem

in the above implementation.

relation r = greaterLessEq(2,3);

while(r());

This produces the following output:
 n<cmpVal

 n==cmpVal

This is because the while loop forces the backtracking to

purse all remaining paths even after the first clauses matches.

The second clause fails due to the (n<cmpVal) guard at its

beginning and this leads to the evaluation of the third and final

clause. Since the third clause does not have the guard

(n==cmpVal), it succeeds and thus we observe the output

“n==cmpVal”. An obvious solution is to put the guard in

front of the third clause. Another solution is to introduce cut

points at the end of the first and second clauses. However a

simpler and preferred solution is to rewrite it in terms of the ^

operator as follows:

relation greaterLessEq(lref<int> n

 , lref<int> cmpVal) {

- 15 -

return (predicate(n<cmpVal)

 && write("n<cmpVal"))

 ^ (predicate(n>cmpVal)

 && write("n>cmpVal"))

 ^ (write("n==cmpVal"));

}

Here we are being explicit about the fact that three clauses are

mutually exclusive candidates. Not only is this more explicit but

also more readable and efficient. Once any one of the clauses

succeeds greaterLessEq also succeeds. Backtracking will

ignore any remaining unevaluated clauses. Thus all future

attempts to seek more solutions from greaterLessEq will fail

immediately. It is important to note the use of additional

brackets around the clauses separated by ^. Since, unfortunately,

the precedence of the ^ operator is higher than && and ||

operators, use of these brackets is necessary to preserve correct

associativity.

Most, but not all, common usages of cuts can be elegantly

replaced with use of ^ operator. Support for operator ^ to define

relations is a feature unique to Castor.

2.11 Specifying Lref parameters
types for relations

There are basically three ways of specifying lref parameters for

relations:

- Basic: lref<T>

- By reference: lref<T>&

- By const reference: const lref<T>&

Basic: If the parameter type is specified to be lref<T>,

arguments of type T and lref<T> are both acceptable. This

versatility makes this mechanism a common choice for

specifying parameters on relations. When the caller passes an

argument of type lref<T>, the callee receives it such that the

new lref points to the same underlying object of type T. This is

similar to passing pointers in C++. However, when the argument

is an object t of type T, the callee receives a copy (on the heap)

of t to which the callee‟s lref refers to.

relation foo(lref<int> i) {

 return True();

}

lref<int> li=2;

foo(1); // OK! passes a copy of 1

foo(li); // OK!

This basic parameter specification style is used most commonly

in Castor.

By reference: For certain types where copy construction can be

potentially very expensive such as std::vector, it is

desirable to prevent implicit and (possibly) repeated copy

construction. This can be done by disabling the ability to pass

arguments of type T directly and requiring only arguments of

type lref<T>. This can be done by specifying the parameter

type as lref<T>&.

relation foo(lref<vector<int> >& v) {

 return ...;

}

vector<int> v= ...;

lref<vector<int> > lv= ...;

foo(v); // Error!

foo(lv); // OK!

All relations in Castor that expect container types (such as

empty and size) as arguments use this form of parameter

specification.

By const reference: This mode of parameter specification is

similar to the basic style with one significant difference. A

const lref<T>& parameter cannot be passed as argument

to another relation that specifies its lref parameter by

reference.

E.g.:

relation bar(lref<int>& j) {

 return ...

}

relation foo(const lref<int>& i) {

 return bar(i); // Error!

}

Yet another, but minor, difference compared to the basic style

is that the value of the lref cannot be modified directly inside

the relations:

relation foo(const lref<int>& i) {

 i=2; // Error!

 return bar(i);

}

This is rarely an issue since direct mixing of such imperative

code inside a declaratively specified relation should be

avoided in practice. The reason being, the imperative

assignment of 2 to i here is performed when the relation is

invoked as opposed to when the relation is evaluated.

2.12 Debugging
Unfortunately, in an imperative world, debugging relational

code is not as straight forward as debugging imperative code.

Debuggers for C++ are, for good reason, designed to debug

imperative code conveniently. In principle, since we let the

computer figure out how to solve the problem, we should be

oblivious to how evaluation takes place. In practice, however,

it is useful to be able to peek into the evaluation as it

progresses. This is important for verifying correctness of user-

defined relations especially when the expected output does not

match what is observed.

- 16 -

For debugging logic programs some creative thinking is

typically required. Since relations return expressions that will be

lazy evaluated, it is not very interesting to place a breakpoint

directly inside the body of a relation‟s definition. In fact, some

of the relation‟s lref arguments may not even be initialized

with a value at the point where the relation is called, but are

likely to be initialized by the time the relation undergoes

evaluation. Also most of the actual execution occurs within the

function objects returned by operators || and && and relation

eq and debugging using breakpoints inside these library artifacts

requires understanding of Castor‟s implementation details
2
.

A simple and primitive technique is to insert print statements at

relevant points to observe the progress. Castor provides a

relation write for printing to stdout in relational manner. In

the following example we add debug statements to the

ancestor_dbg relation to observe the generation of values P

in the second clause as an attempt to find a solution progresses.

relation ancestor_dbg(lref<string> A

 , lref<string> D) {

 lref<string> P;

 return child(D,A)

 || child(D,P) && write(P) && write(",")

 && recurse(ancestor, A, P);

}

The following attempt to find all ancestors of Sam:
lref<string> X;

relation a = ancestor_dbg(X,"Sam");

while(a())

 cout << " :" << *X << " is Sam's ancestor\n";

produces the following output on screen:
:Mary is Sam's ancestor

:Frank is Sam's ancestor

Mary,Frank, :Gary is Sam's ancestor

Gary,

It can be observed from this output that the ancestors Frank and

Mary are discovered without resort to recursion since they are

direct parents of Sam. Once both parents of Sam are found, the

printed output reveals that backtracking proceeds to evaluate the

recursive clause looking for Mary‟s ancestors.

3 Implementing relations
imperatively

The ability to easily reach out from any paradigm to another, as

and when required, is essential in multiparadigm programming.

So far, we have seen examples of how relations can be built on

top of other relations and also how relations can be consumed by

imperative code. In this section we complete this cycle by

understanding how relations can consume non-relational

2
 It may be interesting to note that the basic foundation to

support logic programming is implemented in Castor in only

about 400 lines of code.

facilities. This involves using imperative techniques to

implement the relation.

Relations may be defined either declaratively or imperatively.

The examples seen so far in this document are cases of

defining them declaratively since the programmer is not

involved in providing the operational semantics for the

relation. That is, the author of the relation does not specify the

algorithms and data structures used to perform computation.

Producing imperative definitions for relations is generally

more work compared to producing declarative definitions.

Also declarative definitions are easier to read and get right.

However, there can be situations that motivate a programmer

to define relations imperatively. Typical reasons include:

 Interaction with low level (e.g., I/O, memory, drivers,

etc.) or other imperative facilities for which relational

abstractions either do not exist or the ones available are

inadequate.

 Finer grain control over execution to improve

performance when necessary.

 Improving the ability to step through a relation‟s

execution with a debugger.

Below we cover three approaches to implementing relations

imperatively. The choice of which approach can be taken

depends upon the complexity of relation.

With relation predicate
A test-only relation is one that does not modify any of its

arguments and consequently does not induce any side effects

into the system that need to be reverted during backtracking.

Such a relation is useful in testing if a given condition is true.

Generally, due to their very nature, test-only relations succeed

only once at most. Relation predicate is useful for

defining such relations. The actual test condition can be

packaged into a regular function that returns bool, and then

invoked via relation predicate. Consider defining a

relation that checks if a given file exists.

bool fileExists_pred(string fileName) {

 if(/* file found on disk */)

 return true;

 return false;

}

relation file_exists (lref<string> fileName_)

{

 return predicate(fileExists_pred,fileName_);

}

This is essentially a two-step process. First, the predicate

function fileExists_pred contains the imperative code

to be used for the relation. Second, relation predicate is used to

convert the predicate function into a relation inside the

“wrapper” relation file_exists. Note that the relation

takes an lref argument whereas the function takes a

string argument. Although for both the parameter types can

be lref<string>, it is natural for a relation‟s parameter

- 17 -

type to be an lref and that of an ordinary function to be a regular

type. Relation predicate assumes that the target predicate

function does not take an lref argument. Consequently, if

filename_ is a logic reference, it automatically dereferences

fileName_, when invoking the predicate function

fileExists_pred. If filename_ is not a logic reference,

it will be passed directly.

Also note the customary use of „_‟ at end of the parameter‟s

name „fileName_‟. This indicates that it is not a bi-directional

argument. Thus its value should be defined by the time the

evaluation of the relation takes place. If it is not defined at this

time, an InvalidDeref exception is thrown when

predicate attempts to dereference fileName_.

With relation eval
.. todo.. see reference manual.

As coroutines
Every relation is actually an instance of some function object

type. So far we have defined relations as functions and

expressions. Since this syntactic approach is a declarative way of

specifying the operational details of the underlying function

object, its type name and imperative definition are not visible to

us. In this section we shall see how to implement these function

objects directly. This has the advantage that it gives complete

control over the computational steps involved and also the

relation is easier to step through using a debugger. The

downside, however, is that it requires more code to implement

and also needs some extra care.

We have seen that lazy evaluation is a key aspect of how

relations operate. Each time a result is generated, its execution is

suspended and control returns to the caller. On the next

invocation, the relation resumes from its execution was

suspended, produces the next value and once again suspends

execution and returns control back to the caller. The caller can

choose to invoke it again if more results are needed. Functions

that support this suspend-and-resume behavior are called

coroutines. This is unlike typical functions (i.e. subroutines) that

always start execution from the beginning on every invocation

and return control to the caller after generating all results. Since

in case of coroutines, the caller and the callee both resume

execution when control is transferred to them, coroutines can be

considered to maintain a sibling relationship with their caller.

Subroutines, on the other hand, can be considered to maintain a

child relationship with their caller, as they undergo one full

lifetime on each invocation by the caller.

Since C++ does not natively support defining coroutines, Castor

provides the class Coroutine and four macros (co_begin,

co_end, co_yield, co_return) for this purpose. Although

these are designed for implementing relations as classes, one

may use them outside the context of logic programming.

In Castor, a coroutine is implemented as a function object. To

define this class, we derive it from Coroutine and implement

the function call operator bool operator()(void) as

follows:

// relation to check or generate values in a

specified inclusive range
template<typename T>

class Range_r : public Coroutine {

 lref<T> val, min_, max_;

public:

 Range_r(lref<T> val, lref<T> min_, lref<T>

max_)

 : min_(min_), max_(max_), val(val)

 { }

 bool operator() () {

 co_begin();

 ...

 co_end();

 }

};

Note the use of macro co_begin to start and macro

co_end to end the body of operator(). No statement

should precede or follow these two macros in the method

body. These two macros merely set up a switch statement

spanning the definition of operator(). The complete

definition of operator() is as follows:

bool operator() () {

 co_begin();

 if(val.defined())

 co_return((*min_<*val && *val<*max_)

 || (*min_==*val) || (*max_==*val)

);

 for(val=min_; (*val<*max_)||(*val==*max_)

 ; ++val.get())

 co_yield(true);

 val.reset(); // Important for backtracking

 co_end();

}

Notice the absence of return statements. These have been

replaced with co_return and co_yield. Both macros

return the evaluated value of their argument back to the caller.

Macro co_yield indicates a point where execution is

temporarily suspended, and a true/false value produced

by evaluation of its argument is returned back to the caller.

Next invocation of operator() will resume execution

inside the method starting directly at this yield point. Invoking

this macro essentially causes the coroutine to remember the

point where execution had reached in the previous invocation.

On the other hand, invoking co_return indicates that no

future resumption of execution is required from inside the

method body, and the true/false value produced by

evaluation of its argument is returned to the caller. All future

invocations of operator() on this instance of the class will

return false immediately.

- 18 -

Conceptually, co_yield indicates temporary suspension of

execution and co_return indicates completion of execution.

Since, in logic programming, returning false to the caller is an

indication by a relation that its task is complete,

co_yield(false) also indicates completion as it returns

false. When co_yield‟s argument evaluates to false, all

future invocations of operator() will return false

immediately. This behavior is similar to co_return(false).

The definition of operator() first checks to see if the val is

currently initialized in order to determine whether the relation

needs generate a value for val or simply check if val lies in

the specified range. If val is initialized, then only the check

needs to be performed; otherwise, values need to be generated

for val. The body of the if statement compares val with min

and max and returns the result back to the caller. Since in this

test mode there is no more work to be performed, co_return

is used to return the result of the comparison.

In the case that val is not initialized, the for loop is executed.

The loop header generates values for val starting from min up

to max. On every iteration, the body of the loop yields true back

to the caller indicating successful evaluation of the relation.

Once the execution enters the loop, on every subsequent

invocation of operator(), execution directly resumes at

co_yield and thus performs one more iteration of the loop.

Each time val is incremented and true is returned back to the

caller. Once val exceeds max, the loop terminates and val is

reset back to its original initialized state. Resetting val back to

its original state once the relation‟s work is done is important

since backtracking requires all relations to revert their own side

effects prior to signaling completion. Delegating the task of

reverting side effects to the individual relations that induce them

allows the backtracking subsystem to simple and efficient.

When the function object is a generic class that requires type

parameters it is customary to provide a helper generic function

to allow automatic template parameter deduction as follows:

template<typename T>

Range_r range(lref<T> val, lref<T> min_

 , lref<T> max_) {

 return Range_r<T>(val,min,max);

}

One important thing to keep in mind when implementing

coroutines is to avoid defining variables inside operator(),

since their state will not persist across invocations. Thus local

variables required by the coroutine should be promoted to data

members of the function object.

4 Inline Logic Reference
Expressions

An ILE is an expression composed of at least one logic

reference variable and most of the common overloadable

operators. Unlike typical expressions in C++, ILEs do not

undergo evaluation to produce a result immediately at the

point of definition. Instead, they produce an expression tree

that represents the semantics of the expression. This

expression tree can be evaluated to produce a result, at a later

point in time, by applying the function call operator. The

following example demonstrates these basic semantics:

int i=0; // plain old variable

i+1+1; // simple expression: produces value

2

lref<int> li=2; // logic reference

(li+i)*2; // ILE: produces an

expression tree

Following example uses an ILE where a function is required.

template<typename Func>

void printResult(Func f) {

 cout << f();

}

printResult(li*li / 2); // pass ILE as

argument

In the above code, the ILE undergoes evaluation inside the

printResult when f() is evaluated. We can also return

functions from other functions:

void runtests();

boost::function<int()> halfOf(lref<int> li)

{

 return li/2; // return an ILE

}

boost::function<int()> f = halfOf(4);

cout << f(); // ILE is evaluated here

ILEs provide a convenient way to create expressions that

require delayed evaluation. The convenience comes from not

having to package them explicitly inside a named function.

Such expressions are also traditionally called lambda

expressions. Every ILE contains a copy of all variables and

values required to compute its expression. This set of variables

and values is referred to as the ILE‟s closure. Since copying

logic references is like copying pointers or references (i.e., the

copy refers to the same underlying object), any changes to the

object referred to by the original lref will be observable to

the ILE. When multiple lrefs refer to the same object, the

object will be kept alive until the reference count goes down to

zero. This makes it safe to evaluate ILEs even after the

termination of the scope in which the ILE was created. This

safety is essential in getting the most out of the delayed

- 19 -

evaluation semantics provided by ILEs. The following examples

illustrate the closure semantics.

int x=2;

lref<int> lx=3;

boost::function<int()> ile = lx+x;

cout << ile(); // prints 5

x=1; // this will not observable to the ile as

it contains a copy of x

cout << ile(); // prints 5

lx=4 ; // updating the lref will be

observable to the ile

cout << ile(); // prints 8

Since an ILE is an expression and not a function, it does not

accept any arguments at the time of evaluation. It is a free -

standing expression that can be evaluated at anytime and as

many times as needed. As we saw above, each evaluation may

potentially produce a different result. Changes in the result could

occur due to external code altering the object referred to by one

of the logic references, as in the code above. A change in the

result could also be due to the ILE inducing side effects on its

own closure as follows:

lref<int> lx=3;

boost::function<int()> ile = ++lx;

cout << ile(); // prints 4

cout << ile(); // prints 5

cout << ile(); // prints 6

ILEs such as ++lx which induce side effects are said to be

impure. Those that don‟t, such as x+2, are pure.
3

Creating relations from ILEs
ILEs were originally devised as a quick and easy way to create

anonymous relations directly inline from simple expressions

instead of having to create named relations. ILEs that return

bool values can be turned into relations with the help of

relation predicate. Relation predicate is an adapter that

allows functions or function objects (with up to six arguments)

that return bool to be treated as relations. Relations created by

passing an ILE to predicate are referred to as ILE-based

relations.

The following example demonstrates the use of ILE to generate

even numbers.

//Print all even numbers in the inclusive range

1...20

lref<int> x;

relation evens = range<int>(x,1,20)

 && predicate(x%2==0);

while(evens())

 cout << *x << " ";

3
 This is same as the classification of pure and impure functions

in Computer science.

Above, the ILE-based relation predicate(x%2==0) tests

if x is even. We start out with x not being initialized. Relation

range generates values for x, and since x is part of the ILE‟s

closure, any changes to x will be visible to the ILE. This

allows the ILE-based relation to test the values one by one as

they are generated. This is an example of the classic generate-

and-test pattern commonly used in logic programming. In both

the examples relation range is used to generate values for

logic references and the ILE-based relations filter out values

that fail the check.

The following example demonstrates the use of ILE to

generate Pythagoras triplets.

// Print all Pythagoras triplets less

than 30

lref<int> x,y,z; int max=30;

relation pythTriplets =

 range<int>(x,1,max)

 && range<int>(y,1,max)

 && range<int>(z,1,max)

 && (predicate(x*x+y*y==z*z)

 || predicate(z*z+y*y==x*x));

while(pythTriplets())

 cout << *x << "," << *y

 << ","<< *z << "\n";

Here the first three uses of range generate values for x, y

and z in the range 1 through 30 and the two ILE based

relations are used to check if x, y and z form a Pythagoras

triplet.

Another common usage of ILEs is with relation eq_f, which

takes a function or function object as its second argument. It

unifies the first argument with the value obtained by

evaluating the second argument. Thus, if x and y are lrefs,

then eq_f(x, y*3) unifies x with the value obtained by

evaluating the ILE y*3.

Impure ILEs should not be used when creating ILE-based

relations. If such relations produce side effects, they will not

be reverted during backtracking and will most likely lead to

surprising results. Consider predicate(++x<5) which

increments value of x each time it is evaluated. Here, ++x<5

is an impure ILE as it modifies value of x. Backtracking relies

on reversal of side effects. When such side effects are desired

they should be packaged into a named relation that ensures

reversal of the side effects. Relation predicate(++x<5)

can be rewritten safely as inc(x) && predicate(x<5)

or next(x,y) && predicate(y<5). The former

increments x, and the latter unifies y with the incremented

value of x (without effecting value of x). The latter style is

generally preferred.

The advantage of ILE-based relations is the brevity; the

downside, however, is that they are not as full featured as

- 20 -

named relations. ILE-based relations can only perform tests on

values produced by other relations; they are unable to generate

solutions themselves. Thus all logic references involved in the

ILE must be initialized at the time of evaluation.

Limitations of ILEs
There are a couple of limitations to ILEs that users should be

aware of. The first one is due to language limitations, and the

second one is by design.

1) Inferred return type: A seemingly trivial question that one

may ask is “What is the type of the result produced on

evaluation of an ILE?” The answer of course is “It depends on

the expression represented by the ILE”. A more precise answer

should be “Same as if the expression were rewritten with logic

references substituted with their effective types”. That is, the

expression x*y should yield an object of the same type and

value regardless of whether x and y are lrefs or plain old

variables. Unfortunately, this is not always true as it is not

possible to programmatically compute the return type of an

arbitrary expression or function call in C++. Then how does one

determine the return type of an ILE? It is inferred using the

following intuitive rules:

- All comparison operators (<, >=, ==, != , etc.) and

operators &&, || and ! have return type bool.

- Return type of prefix ++ and –– is T&, if T is the

argument type.

- All other unary and binary operators are assumed to

have return type same as the type of their first

argument.

An easy way of determining the type is to simply observe

whether or not the ILE as a whole represents a comparison

operation. If the ILE finally yields the result of a comparison,

then its return type is bool, otherwise the return type is

determined by the first argument to operator that is evaluated

last in the ILE. Here are some examples:

 lref<int> x=3;

 double y=1;

 2.0 * x; // double

 x * 2.0; // int

 y*x; // double

 x*y; // int

 2*x + 3.1; // int

 3.1 + 2*x; // double

 5 < x; // bool

 x == x; // bool

 x < 3*x+5; // bool

 3*x+5 < x; // bool

 ++x; // int&

2) Supported operators: All overloadable operators with the

exception of the following are supported for the creation of

ILEs.

- AddressOf operator &

- Dereference operator *

- Member access operator ->

- Indexing operator []

- Comma operator ,

- All forms of assignment (=, +=, *= etc.)

Since assignment is used to assign a new value to an lref

immediately, it obviously cannot be used to produce ILEs.

Similarly, dereference operator * and operator -> are used to

access the underlying value and it rules them out from being

used to compose ILEs. Address-of and comma operators take

on default language -defined semantics when used on lrefs.

Finally, as there is no reasonably intuitive way to know the

result type of an index operator, it too remains unsupported.

Summary
The following is a gist of the major points covered in this

section on ILEs:

- ILEs are expressions that can be treated as function

objects.

- Every ILE carries its closure with it. Thus, it can be

safely evaluated even after the termination of their

lexical scope.

- ILEs are either pure (i.e. free of side effects) or

impure.

- Only pure ILEs should be used to create ILE-based

relations.

- ILE-based relations cannot generate solutions; they

can only perform testing of values generated by other

relations.

- Return types of ILEs are determined by applying the

two rules noted above.

- Most overloadable operators are supported on lrefs

for creating ILEs.

5 Limitations of Logic
Paradigm

Bi-directionality of lref arguments.
Typically lref parameters for relations are bi-directional. A

relation generates a value for an lref parameter if its value is

left undefined by the consumer of the relation. However it is

not always feasible or even sensible for a relation to generate

values for some of its lref parameters. Values for these lrefs

must be defined by the time the relation is evaluated. Such lref

parameters are called input-only parameters.

Consider implementing relation not_eq which succeeds if

the two arguments are not equal.

relation not_eq(lref<int> lhs_

 , lref<int> rhs_) {

 return …

}

- 21 -

In this case, it is straightforward to compare the two arguments

and check if they are not equal. But if one of the arguments is

not initialized, on what basis could we generate a sensible

value(s) for such that it is not equal to the other? There are

multiple possibilities but no single approach can be easily

deemed to be any better than another. For instance, we could

start at 0 and go on till we hit

numeric_limits<int>::max(). Or we could start at

numeric_limits<int>::min() continuing until

numeric_limits<int>::max(). Perhaps even backwards

starting from numeric_limits<int>::max().

Attempting a search in such a wide-spanning range is rarely a

very productive or useful way to solve problems. The futility of

such an approach will seem even more obvious if we consider

defining not_eq for string. Thus it only makes sense for

lhs_ and rhs_ to be input-only parameters. By convention,

names of input-only parameters contain a „_‟ suffix, and in-out

parameters do not.

Another such example is the relation size provided by Castor.

relation size(lref<Cont>& cont_

 , lref<typename Cont::size_type> sz) {

 return ...

}

The first argument is any standard container and the second

argument represents the size of a container. It is straightforward

to test if cont_ has size sz and also easy to generate a value

for sz given an arbitrary container object. But, what if sz is

initialized and cont_ is not? It makes no sense to come up with

random containers having size sz with arbitrary elements. Thus

we specify cont_ as an input-only parameter.

In each of these cases, it is left up to the consumer of these

relations to decide how the values for an input-only parameter is

to be generated.

I/O is not reversible.

Backtracking by its very nature depends upon the ability to

revert side effects when pursuing alternate paths of evaluation.

I/O, on the other hand, is rarely something that can be reverted.

Once some data has been written to a socket or a document has

been printed, there is no going back. Thus I/O and backtracking

are at odds with each other. There are two ways to make these

co-exist. First option is demand support from all kinds of I/O to

be reversible. This is clearly not practical. The second option is

to turn a blind eye to any I/O that occurs during the evaluation of

relations. This is the only practical way in which the two can be

made to co-exist. However, it is up to the consumer of any

relation that performs I/O to ensure that such side effects do not

impact or interfere with the choices made during backtracking.

They should be used in a way that is “backtracking-safe”.

Relations write and read are examples of I/O relations in

Castor. Consider the following misuse of read to check if the

word read from stdin is either “Hello” or “World”.

relation r = read("Hello") ^ read("World");

Although the declarative reading “read either Hello or World”

is sound, it assumes that if the first read fails then its side

effects will be reverted so that the second read can re-read

the data. The correct way to perform this operation is to call

read only once as follows:

lref<string> w;

relation r = read(w) &&

 (eq(w,"Hello") ^ eq(w,"World"));

Here we read the value, whatever it may be, into w, and then

check if w is either “Hello” or “World”.

6 Logic Programming
Examples

In this section we solve a few problems using LP to get a

better feel for logic programming techniques.

Factorial

lref<int> j;

relation r = range(j,1,10)

 >>= reduce(j, std::multiplies<int>());

r();

cout << "Factorial of 10 = " << *j;

Directed acyclic graphs.

Figure 1

Here we consider the problem of finding paths in the above

directed acyclic graph consisting of 5 edges. The graph can be

1

3

4

5

2

- 22 -

easily described in terms of its edges. In the following edge

relation, each line represents a directed edge of the graph. The

parameters n1 and n2 represent the start point and the end point

of an edge respectively.

// Representation of the directed edges in the

DAG shown in figure 1

relation edge(lref<int> n1, lref<int> n2) {

 return eq(n1,1) && eq(n2,2)

 || eq(n1,2) && eq(n2,3)

 || eq(n1,3) && eq(n2,4)

 || eq(n1,5) && eq(n2,4)

 || eq(n1,5) && eq(n2,2)

 ;

}

Given the definition of an edge we say that a path exists between

two nodes Start and End if:

 A directed edge exists between Start and End. OR

 A directed edge exists between Start and some node

(nodeX) AND a path exists from nodeX to End.

This relation can thus be defined as follows:

// Rule defining the meaning of a path

relation path(lref<int> start, lref<int> end) {

 lref<int> nodeX;

 return edge(start, end)

 || edge(start, nodeX)

 && recurse(path, nodeX, end);

}

Given the relations edge and path above, we are in a position

to ask many different questions concerning paths in the directed

acyclic graph. A simple question is to see if a path exists

between any two nodes:

relation p1_4 = path(1, 4);

if(p1_4())

 cout << "Path exists from 1 to 4";

A typical problem in graphs is to find all nodes reachable from a

particular node. The following code prints all nodes reachable

from node 5.

lref<int> node;

relation p5 = path(5, node);

while(p5())

 cout<< *node <<" is reachable from 5\n";

By leaving variable node uninitialized above, we are letting

the computer generate values for it. It is interesting to note

that 4 is listed twice when the above code is executed. That is

due to the fact that node 4 can be reached via two independent

paths from node 5, and during the process of inferencing both

paths are discovered. Similarly, leaving the first argument

uninitialized and specifying 5 as the second argument, gives a

list of all nodes from which node 5 can be reached.

It is also possible to print all pairs of nodes between which a

path exists by simply leaving both arguments to path

uninitialized:

lref<int> n1, n2;

relation p = path(n1, n2);

cout<< "Path found between these nodes\n";

while(p())

 cout << "(" << *n1 <<","<< *n2 << ") ";

The above code will print the following pairs in order: (1,2)

(2,3) (3,4) (5,4) (5,2) (1,3) (1,4) (2,4) (5,3) (5,4). Once again

the pair (5,4) is listed twice as two paths were found from 5 to

4.

Finite Automata (FA)
Finite automata can be represented in the form of a set of

transitions and a set of final states. Class Nfa below encodes

the nondeterministic finite automata (NFA) from figure 2

which is equivalent to the regular expression ((ab)*ba) | b. It

has two static member relations transition and final.

Relation transition describes each transition in terms of

the two states and the input character that make up the

transition. Relation final specifies the final states in the

NFA.

A global relation run defines the rule for a successful run of

any FA over an input string. The specific Finite Automata

over which it operates is specified as a template parameter.

The run defines that a run is successful if:

 The input string is empty AND a final state has been

reached, OR

 There exists a transition from current state (st1) to

some other state (st2) over the first character in the

input string AND there is a successful run over the

rest of the string starting from state st2.

- 23 -

0 1

3

4

2

b

a

b

b a

RegEx: ((ab)*ba)|b

Start State: 0

Final States: 3, 4

Figure 2

Class NFA‟s static member relation transition describes the

state transitions and member relation final describes the final

states. Global relation run takes NFA as a template parameter.

It executes the NFA over an input string by matching one of the

possible transitions to the next character.

class Nfa { // => ((ab)*ba)|b

 static const char a = 'a', b = 'b';

public:

 // transitions NFA

 static relation transition(lref<int> st1

 , lref<char> ch

 , lref<int> st2) {

 return

 eq(st1,0) && eq(ch,a) && eq(st2,1)

 || eq(st1,0) && eq(ch,b) && eq(st2,2)

 || eq(st1,0) && eq(ch,b) && eq(st2,4)

 || eq(st1,1) && eq(ch,b) && eq(st2,0)

 || eq(st1,2) && eq(ch,a) && eq(st2,3)

 ;

 }

 // all final states of the NFA

 static relation final(lref<int> state) {

 return eq(state,3) || eq(state,4);

 }

};

// determines successful run of a FA

template<typename FA>

relation run(lref<string> input

 , lref<int> currSt=0) {

 lref<char> firstCh;

 lref<string> rest;

 lref<int> nextSt;

 return

 eq(input,"") && FA::final(startSt)

|| head(input,firstCh) && tail(input,rest)

 && FA::transition(currSt,firstCh,nextSt)

 && recurse(run<FA>, rest, nextSt)

 ;

}

Given the above relations, any input string can be tested

against the finite automata as follows:

if(run<Nfa>("aabba")())

 cout << "Matched";

else

 cout << "No match";

- 24 -

Query Expressions
…

7 References

[CastorDesign] Roshan Naik, Blending the Logic Paradigm into C++: Discusses the design and implementation of the core

of Castor that enables the LP in C++. http://www.mpprogramming.com/resources/CastorDesign.pdf

[CastorReference] Roshan Naik, Castor reference manual: http://www.mpprogramming.com/resources/CastorReference.pdf

[Leda] Timothy Budd, Multiparadigm programming in Leda: Addison-Wesley, 1995: A seminal piece of work in the field

of multiparadigm programming. This book is a rich source of multiparadigm programming techniques.

Acknowledgements: Many thanks to Gardner Rust, Julius Gawlas, Ali Cehreli and Mansoor Peerbhoy for providing valuable

suggestions on this document.

